From PRG to PRF

Define: A collection of functions
\[\exists x \in \mathbb{R}^n : \exists K \in \mathbb{R}^{n \times m} \times \exists D \in \mathbb{D}^m \rightarrow S(n) \]

is PRF if:
- \(k \in K \)
- Query \((x)\): return \(\delta(k,x) \)

Adv. can choose

\[\exists \mathcal{E}_1, x \in \mathcal{R}_{D,k} \]
- All functions
- \(\exists g : D \rightarrow \mathcal{C} \)
- \(\mathcal{E}_2 \) Dict = \(\emptyset \)
- Query \((k)\): if \(x \) has not been queried,
 - \(x \in \mathcal{C} \),
 - Store \((x,y)\) and return \(y \) at \((x,y)\) in Dict.

Q: \(\exists \mathcal{E}_3 \), \(\mathcal{C} \) Dict = \(\emptyset \)
- Query \((x)\): return \(g(x) \)

Illustrate PRG vs PRF

\[\begin{array}{c}
\text{PRG} \\
\text{Real} \\
\mathcal{G}(s) \\
\text{UA} \\
\end{array} \]

\[\begin{array}{c}
\text{PRF} \\
\text{Real} \\
\mathcal{G}(s,x) \\
\text{UA} \\
\end{array} \]

\[\begin{array}{c}
\text{Read} \\
\mathcal{C} \in \mathcal{C} \\
\text{UA} \\
\end{array} \]
The diagram illustrates a construction of a PRF from a PRG. The process involves the following steps:

1. **Construction**: PRG => PRF
2. **Length Doubling**: PRG

The construction is as follows:

- Given a key $k = s_0$, the process starts with G_L and G_R.
- The output is y_0 and y_1.

The function $f(k, x)$ is defined as:

$$f(k, x) = G_L(G_R(G_R(k), ...))$$

The tree construct is shown below, where each level represents a step in the construction process.