- Groups of prime order
- Groups of unknown composite order.

\[\mathbb{Z}_n^x \text{ is group of } \]
\[\text{numbers mod } n, \text{ under mult } \]
\[\text{relatively prime w/ } n \]
\[\sim \varphi(n) \text{ # of numbers relatively to } n. \]

Euler's Totient

Suppose \(n = pq \), \(p \) and \(q \) are distinct primes.

What's \(\varphi(pq) = \) \(\varphi(p) \cdot \varphi(q) \)?

\[\varphi(p) = \frac{p^1 - 1}{p - 1} \]
\[\varphi(q) = \frac{q^1 - 1}{q - 1} \]
\[\frac{pq - 1}{pq - 1} - \frac{(q - 1)}{(q - 1)} - \frac{(p - 1)}{(p - 1)} \]
\[\frac{pq - 1 - q + 1 - p + 1}{pq - 1} = (p - 1)(q - 1) = \varphi(p) \cdot \varphi(q) \]

Factoring Assumption:
Given \(n = pq \), where \(p \) and \(q \) are large primes, it's hard to find \(p \) or \(q \).
- Given a number X that is a common factor of n, i.e. $\gcd(x, n) \neq 1 \implies \gcd(x, n) \implies \text{factor of } n$.

Facts about finding primes:

- We have algo for checking if a number is prime.
 - AKS deterministic polynomial but bad constants.
 - Miller-Rabin randomized
 \Rightarrow shows a number is prime w/o finding the factors.

Prime Number Theorem.

Density: $\pi(n)$ # of primes less than n.

$$\pi(n) \sim \frac{n}{\log n} \quad \lim_{n \to \infty} \frac{\pi(n)}{\frac{n}{\log n}} = 1$$

- Asymptotic $\pi(n) \gg \frac{n}{\log n} \gg \frac{n}{\log_2 n}$

- $X \in [2^{a-1}, 2^a]$

$$\Pr[X \text{ is prime}] \geq rac{1}{\sqrt{\pi}} \frac{2^a - 2^{a-1}}{2^a}$$

$$\mathcal{O}(2^a) \frac{1}{\sqrt{\pi}}$$

- Sample 2^a:

$$x \in [2^{a-1}, 2^a]$$

check if X is prime.

repeat-alternate.

Concludes after $\mathcal{O}(2)$ trials expectation.

RSA: PKC
\[\text{Gen}(k): \quad \text{Sample } p, q \text{ large primes, public moduli } n = p \cdot q \]

\[\Phi(n) = \frac{(p-1)(q-1)}{e, d} \quad \text{are chosen so that } e \cdot d = 1 \mod \Phi(n) \]

1st secret exponent. 2nd secret exponent.

\[e \text{ is typically fixed } e = 3, \quad d \text{ fixed by these mod } \Phi(n) \]

\[\text{Enc}(pk, m): \quad \sigma_k = (p, q, d) \]

\[\rho_k = (n, e) \]

\[c = m^e \mod n \]

\[\text{Dec}(sk, c): \]

\[m' = c^d \]

Correctness:

\[m' = (m^e)^d \mod n \]

\[= m^{e \cdot d} \mod n \]

\[= m^{\ln m \cdot k + 1} \mod n \]

\[= m \]

Security relies on RSA assumption.

RSA hard \implies\ Factoring is hard.

\[\Rightarrow \text{RSA-UFo} \]

\[\text{For all } n = pq, \text{ is } \phi(n) \text{ feasible?} \]

\[e = 3 \text{ possible?} \]
\(n \neq 7, \frac{5}{4} \)
\(q(n) = 6 \cdot 4 = 2^3 \cdot 3 \)
\(3 \) has no residue in \(\mathbb{Z}/q(n) \)

RSA Signatures:

\[\text{Sign}(s, m): \]
\[d, e, \beta, \alpha \]
\[\sigma := m^d \mod n. \]

\[\text{Verify}(\sigma, m, pk): \]
\[n, e \]
\[\text{Check } m = \sigma^e \mod n. \]

CRT representation
- Speedup in RSA operations
- Fault attacks.

Theorem:
Given primes \(p, q \)
and \(\alpha < p, \beta < q \),
we can find a unique \(X < pq \)
\[X \equiv a \pmod{p} \]
\[X \equiv b \pmod{q} \]

\[X = a + pk \]
\[X = b + q \] for some
\[x \equiv (a \mod p) \]

Proof: Specifically:

Let \(p^{-1} \) be the inverse of \(p \) in \(\mathbb{Z}_q^\times \),

\[(p \cdot p^{-1}) \equiv 1 \mod q \]

Same for \(\bar{q}^{-1} \),

\[(a \cdot \bar{q}^{-1}) \equiv 1 \mod p. \]

Let \(x \equiv a \cdot \bar{q}^{-1} + b \cdot p \cdot p^{-1} \mod pq \).

Show \(x \equiv a \mod p \).

\[
\begin{align*}
x &= a \cdot \bar{q}^{-1} + b \cdot p \cdot p^{-1} \\
 &= a \cdot \bar{q}^{-1} \mod p.
\end{align*}
\]

Same for \(x \equiv b \mod q \).

Claim: CRT representation preserves multiplication.

Multiply using CRT, \(x \cdot y \mod pq \).

- Convert to CRT
 \[
 \begin{align*}
 a &= x \mod p \\
 b &= x \mod q \\
 c &= y \mod p \\
 d &= y \mod q.
 \end{align*}
 \]

- \(U = (a \cdot c) \mod p \)
 \(V = (b \cdot d) \mod q \)

By CRT

Solve for \(z \),

\[z \equiv (a \cdot c) \mod p \]

\[z \equiv (b \cdot d) \mod q. \]
By claim, \(Z = XY \mod pq \)

In RSA:

Recall

\[
\begin{align*}
 c & \mod n \leftarrow 2^x \\
 \text{square and add,} \\
 2^x \text{ iterations of } 2^x \text{-bit multis.} \\
 \text{mod Multiplying } (2^x) \times (2^x) \text{ operations}
\end{align*}
\]

Instead:

\[
\begin{align*}
 u &= c \mod p \\
 v &= c \mod q \\
 d_p &= d \mod (p-1) \\
 d_q &= d \mod (q-1) \\
 a &= u^d \mod p \\
 b &= v^d \mod q \\
 x &= a \times b \mod n \\
 2^x &\approx \frac{8}{7} \text{ op.}
\end{align*}
\]

Fault attacks

- Some operations are sensitive to mistakes in computing bit flip

Personal computers have ECC in ROM making this unlikely

- Smart cards or embedded devices more susceptible

- Space, cosmic rays no filtering

- Overvoltage, undervoltage

\[
\begin{align*}
 X &\rightarrow \text{Program 1} \rightarrow 0 \rightarrow \text{Program 2}
\end{align*}
\]
Only sign any valid even numbers.

6 = a \mod p \quad 6' = a' \mod p
= b \mod q \quad = b' \mod q

(6-6') = 0 \mod q.

q divides (6-6')

\gcd(n, 6-6') = q \Rightarrow \text{recovery of secret key.}