


Dec
$$(5k=6, (A, C'))$$
:
redurn C'/A^{b}
- Homomorphic Eacypton.
• En $(m_{1}) \times En C(m_{2})$
 $\mathcal{M} = En ((m_{1} \cdot m_{2}))$ Conduct de
Consider m_{1}, m_{2} EN
Construction
Consider m_{1}, m_{2} EN
Consider m_{1}, m_{2} EN
Construction
Construction
Consider m_{1}, m_{2} EN
Construction
C

$$\begin{array}{c} f|k = B = 0 \\ f|k = B = 0 \\ Perioder \left((A, C'), b_{1} \right) \\ A^{b_{1}} \longrightarrow partial de reprint \\ A^{b_{1}} \longrightarrow partial de reprint \\ Final Dec ((A_{1}, A_{1}, A_{2}, C')) \rightarrow \\ C' ((A^{b_{1}, A_{2}, A_{2}, C')) \rightarrow \\ C' ((A^{b_{1}, A_{2}, A_{2}, C')) \rightarrow \\ C' ((A^{b_{1}, A_{2}, A_{2}, C')) \rightarrow \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ A^{b_{1}, b_{2}, A^{b_{3}} \end{array}$$

$$\begin{array}{c} F = Vathers \\ F = Vathers \\ C = m a \end{array}$$

$$\begin{array}{c} F = Vathers \\ F = Vath$$