Zero Knowledge Proofs notation

- Alice knows $x^k = X$
- Public key

ZKP is
- Alice can say: "I know my secret key x s.t. $X = g^x$"
- Statement
- Relation/predicate $X = g^x$

If $X = g^x$
- Witness
- Statement
- Relation/predicate $X = g^x$

Where's valid ZKP?

Language L is a set of strings $x \in L \iff \exists w, s.t. L(x, w) = 1$

Ideal Functionality

Verifier

Prover Alice x, w → Ideal functionality checks $L(x, w)$ if $y = x$

Bob → "works as good as the IF"

Interactive Protocol

Verifier

Prover Alice

$P(x, w)$ → "challenge"

Verifier Bob

Response $V(x)$ starts with "just statement"
- Output:
 \[V(\eta(x)) \]
 \[\eta(\text{sim}) \]
 means output of \(V \)
- View:
 \[V(\eta(x)) \]
 means a transcript of all messages received by \(V \)
- Random choices made by \(V \).

- Correctness:
 "verifier accepts if \(\text{prover is honest} \)"
 \[
 \forall x, w, L(x, w) = 1, \quad P_{\eta} \left[\text{out}_{\eta} \left[\eta(\text{sim}) \right] = 1 \right] = \frac{1}{2}
 \]

- Soundness:
 "verifier only accepts \(x \in L \)"
 \[
 \forall \eta, x, \quad P_{\eta} \left[\text{out}_{\eta} \left[\eta(\text{sim}) \right] = 1 \right] \leq 1 - \delta
 \]

- Extraction (stronger than soundness):
 "verifier only accepts if \(x \in L \)
 and prover "knows" witness \(w \"

- Zero Knowledge:
 "verifier knows no more information after the protocol than before"
 "view of the verifier can be simulated even without interacting with the prover"

\[\forall x, w, L(x, w), \exists s \approx_{\varepsilon} \text{ simulator} \]
\[\text{View}_{\eta} \left[\eta(\text{sim}) \right] \approx \left[V(\eta(x)) \right] \]
\[\Downarrow \]
\[\text{real transcript} \]
\[\Downarrow \]
\[\text{simulated transcript} \]

Protocol for \(ZK(\hat{\xi}) \): \(X = g^{x} \hat{\xi} \), \(|G| = p \)

\[P(X, x) :\]
\[k \in \mathbb{Z}_{p} \]
\[K = \alpha^{k} \]
\[\Sigma \text{ sigma protocol} \]

\[P(X) \rightarrow V(X) \]
\[\rightarrow \hat{\xi} \rightarrow \Xi \]

\[\rightarrow \hat{\xi} \rightarrow \Xi \]
\[S = xc + k \]

- Correctness: \[g^S = g^{xc + k} = (g^x)^c g^k = x^c K \]

- Zero knowledge:
 \[
 \text{View } \left[P(k, x) \rightarrow V(x) \right]
 \]

 \[(k, s) \text{ where } g^s = x^c K \]

 \[S(x) = K \in G_1, c \in \mathbb{Z}_p, \quad s = \log_g K + c \log_g x \]

 \[c \in \mathbb{Z}_p, s \in \mathbb{Z}_p, K = s^i / x^c \]

- Extraction for next time:
 - If \(A \) produces a valid proof for \(x \), with high prob.
 - Extractability: \(A \) can use \(U \) to adapt a witness.

 \[\text{Crun } A \text{ multiple times} \]

- Adapting validity:
 \[A(x, z) \]

 \[c \in C_1 \Rightarrow A \text{ adapts validity} \]

\[\prod \text{adapt validity} \]

\[S^u A \]

\[\text{Adapt validity} \]
"Run A twice, with the different challenges."

We construct an extractor $\mathcal{E}_A(\pi^2, X)$:

1. $z \leftarrow Z_{\ell^2}$ (where ℓ bits of randomness are needed).
2. Run A_1 until it outputs a message K:
 $$\mathcal{A}(\pi^2, X; z) \rightarrow K.$$
3. $c_1 \leftarrow Z_p$ (Send c_1 to A_1, run until receiving s_1).
4. Run $\mathcal{A}(\pi^2, X; z)$ a second time, A_2 outputs K.
5. $c_2 \leftarrow Z_p$ (Send c_2 to A_1, receive s_2).

If $\text{adv}_{\mathcal{A}}(\pi^2, C) = 1$ with prob ϵ, then

$$g^{s_1} = X^{c_1}K$$
and
$$g^{s_2} = X^{c_2}K$$

$g^{s_1}/g^{s_2} = X^{c_1}K/X^{c_2}K$

$g^{s_1-s_2} = X^{c_1-c_2}$

$g^{s_1-s_2} = (g_{s_1-s_2})^{c_1-c_2}$

Solve for $X = (s_1-s_2)/(c_1-c_2)$.

Commitments:

Create a commitment for π^2 with a public \bar{r}:

$$Z_{\ell^2} \times \{0, 1\}^\ell: C = g^x h^r$$

Commitment Schemes

$A \xleftarrow{\$} Z_p$ (secret $x \in Z_p$)

Bob stores C

Bob reopens $\text{Com}(\pi^2, C)$

Pedersen Commitments

$\text{Com}(x, r) = g^x h^r$
\[1 \wedge \exists \left(\frac{\ell = g^x}{C} \right) \rightarrow U(L) \]

Why? For any \(x \), and \(C \), exactly one \(r \) exists such that
\[g^x \cdot r = C \quad \text{and} \quad h^r = C / g^x \]
\[r = \log_h C / g^x \]

Discrete log commitment

\[g^x = C \quad \text{Hash ("Scissors") (only valid for } x \text{ sampled from large space)} \]

Could PKE commitment?

\[\text{Com}(x, r) = \frac{g^r}{g^{r(x)}} \]

\[\text{Proof:} \]

Suppose \(A \) breaks "binding."

We have to construct \(A' \) that solves DL-Gr.

\[A'(1^n, g, X) \rightarrow X = g^x \]

\[A(1^n, g, X) \rightarrow X_1, X_2, r_1, r_2, C \]

\[C = g^{X_1 r_1} \quad X_1 \neq X_2 \]

\[C = g^{X_2 r_2} \quad X_1 \neq X_2 \]

\[g^{X_1 - X_2} = g^{r_2 - r_1} \]

\[g^{(X_1 - X_2) / (r_2 - r_1)} = X \]

Output \((X_1 - X_2) / (r_2 - r_1) \)

DL-Gr hard

\[\Rightarrow \text{Pegerson is binding} \]

Prove "attack on Pedersen \[\Rightarrow \text{attack on DL-Gr} \]

Zero Knowledge proof
\[K = g^{k_1} h^{k_2} \]

- Correctness:
 \[g^{s_1} h^{s_2} = g^{xc+k_1} h^{rc+k_2} = (g^x)^c g^{k_1} (h^c)^c h^{k_2} = (g^{x+c})^c (g^{k_1}/k_2) = c^c K \]

- Simulation: \(g^{s_1} h^{s_2} \approx c^c K \)

First step: What is \(\text{Ver}(\text{P}(x), y) = (K, c, c, a) \) and get \((K, c, s_1, s_2, c_2, s_1, s) \).

Application:
- ZK proofs about commitments and opening

\[\text{ZK}_E(x, c): c = g^x h^r \text{ and } \text{first } d_r \text{ of } x \text{ is } 0 \]

\[\text{ZK}_E(\text{doc, sig}): \text{doc is signed by sig from the DMV} \]

Possibility:

\[\text{hash}(\text{name}) \]

\[\text{hash}(\text{age, r}) \]

\[\text{Reveal just the portion you need} \]

OR proofs: \[\text{ZK}_E(x): x_1 = g^x \]
I know ONE of these public keys.

Run N Pseudorandom keys.

We use the simulator for these.

We have 2 degrees of freedom.

I choose C, S3, S1.

Let prove choose C, S3, S1.

In order to prove that...