Zero Knowledge Proofs notation

- Alice: \(x, g^x = X \)
 \[\text{public key} \]
 \[\text{private key} \]

- Bob: \(X \)
 \[\text{public key} \]
 \[\text{private key} \]

ZKP is

- Alice can say:
 \[\text{"I know my secret key } x \text{ s.t. } X = g^x \" } \]

- **Statement**: \(X \)
 \[\text{public key} \]
 \[\text{private key} \]

ZKP \(\exists (\exists) : X = g^x \)

- witness
- statement
- relation/predicate: \(X = g^x \)

Where's the ZKP?

- Language \(L \in NP \) is a set of strings
 \[x \in L \iff \exists w \text{ s.t. } L(x, w) = 1 \]

Ideal Functional

- A sequence of predicates
- valid for
- statements
- witness
- predicate

- monix statements
Interactive Protocol

Verifier

Bob

"commits"

Verifier

Bob

V(X)

Verifier starts with

Just statement

output Accept/Reject

- Output [P(X,w) ⇆ V(X)]
 | means output of V

- View V[P(X,w) ⇆ V(X)]
 means a transcript of all
 messages received by V
 - random choices made by V.

- Correctness: "Verifier accepts if prover is honest"

\[\forall X, w. L(X,w) = 1, \Pr \left[\text{Output} \left[P(X,w) \leftrightarrow V(X) \right] \right] = y \]
Soundness: "verifier only accepts $x \in L$"

$$\forall A, x \in \Pr \left[\text{out}_v[A(x) \leftrightarrow V(x)] = 1 \quad \text{and} \quad x \notin L \right] \leq \text{negl}$$

Extraction (Stronger than Soundness)

"verifier only accepts if $x \in L$
and prover "knows" witness w"

Zero Knowledge: "verifier knows
no more information after
the protocol than before"

"view of the verifier can be simulated
even without interacting with the prover"

$$\forall x, v, L(x), \exists S \epsilon \text{-similar}$$

$$\text{View}_v[P(x,v) \leftrightarrow V(x)] \approx \leq (x)$$

real transcript interacting
with prover.

Simulated transcript

Protocol for $ZK(\frac{1}{3})$:

$X = g^x, |G| = p$

$P(X, x)$:

"assert" $V(x)$
\[k \in \mathbb{Z}_p \quad K = g^k \]

Challenge

\[c \in \mathbb{Z}_p \]

\[s = xc + k \]

Response

\[g^s = x^c \]

Correctness: \[g^s = g^{xc + k} = (g^x)^c g^k = x^c K \]

Zero-knowledge:

\[
\mathsf{View}_V \left[p(x, w) \leftrightarrow V(x) \right]
\]

\[\mathsf{Transcript} = (K, c, s) \text{ when } g^s = x^c K \]

\[\mathsf{Equal Distribution:} \quad P \left[\mathsf{Transcript} = (K, c, s) \right] = \begin{cases} \frac{1}{|\mathbb{Z}_p|} & \text{if } g^s = x^c K \\ 0 & \text{otherwise} \end{cases} \]

S(X):

\[K \in G_1, c \in \mathbb{Z}_p, \quad s = \log_g K + c \log_g X \]

\[c \in \mathbb{Z}_p, s \in \mathbb{Z}_p, K = g^s / x^c \]

Extraction for next time.