Today:
- Finish definition of ZKPoK
- ZK for more languages "statement"

\[\text{ZKPoK}_x \in (w) : L \left(\begin{array}{c} x, w \end{array} \right) \]

Languages
a language \(L \) is a set
\[x \in L \]
\[x \in L \text{ is an NP-language:} \]
\[\forall x \in L \]

Defn:
A ZKPoK scheme for language \(L \) is a PPT Prover \((P) \) and Verifier \((V) \) satisfying:
- Correctness: \(\forall x \in \Sigma \; w \in W, \; L \left(\begin{array}{c} x, w \end{array} \right) = 1 \);
\[\text{Output} \left[P(x, w) \leftrightarrow V(x) \right] = 1 \]
- Honest Verifier Zero-knowledge"
"Simulatability":
\[\exists S, \; \exists \text{View}[P(x, w) \leftrightarrow V(x)] \]
\[\forall \xi, \; \exists S(x) \]

Crypto Jake
Fire Distinguisher

- Extractable:
\[\forall A, \; \text{Pr} \left[\text{Output} \left[A(x) \leftrightarrow V(x) \right] = 1 \right] = \text{negl.} \]

Then \(\exists E \), such that \(\text{Pr} \left[w \leftarrow E_A(x) : L \left(\begin{array}{c} x, w \end{array} \right) = 1 \right] = \text{negl.} \)

For the Schnorr protocol:
\[x, u, y \sim \]
\[c \sim \]
- Correctness:
 $$\delta = \delta - (g)(h') - m \cdot n$$

- Simulation:
 $$S(x) = c, c \in Z_p \setminus \{0\}, s \in Z_{161}, K = \delta / X$$

- Extractor:
 $$E_{\delta}(x)$$

 Suppose
 $$A \leftarrow PF(A' \leftarrow N)$$ output

 $$A, K \rightarrow v$$

 Define:

 Run $$A(x)$$ until it outputs $$K$$.
 Make a "snapshot" of $$A$$ as $$A'$$.
 Sample
 $$c_1 \leftarrow Z_{161} \setminus \{0\}$$
 $$c_2 \leftarrow Z_{161} \setminus \{0\}$$

 Let
 $$s_1 = A'(c_1)$$
 $$s_2 = A'(c_2)$$

 Note that with $$p = X$$
 $$X \cdot K = \delta$$

 Check this, repeat as necessary!

We solve for
 $$\overline{x} = (s_1 - s_2) / (c_1 - c_2)$$

 Extended euclidean algorithm

 $$p = 6$$

 $$x = \overline{x}$$

 Comp. Sound: $$x \in L$$, Prover doesn't necessarily "know" $$w$$

Extending ZK Proofs to Other Languages:

- ZK Proofs are secure:
 $$\delta = A, \delta = B$$

 - Repeat with twice?
 - Use the same $$c$$?

 $$P (a, b)
 k_1 \leftarrow Z_p$$
 $$k_2 \leftarrow Z_p$$

 $$\overline{K_1, K_2} \rightarrow c \leftarrow Z_p \setminus \{0\}$$

 $$S_1 = k_1 + ca$$
 $$S_2 = k_2 + cb$$

 $$S_1, S_2 \rightarrow \text{Check} \overline{S_1, S_2} \leftarrow \overline{A^c K_1}$$
To check:
- correctness
- simulatability
- extractability

$\text{View}_V(\{K_1, K_2, \xi, s_1, s_2\})$

Commitments:

(com, open)

- hiding $\text{com}_r(x) \rightarrow c$ reveal nothing about x for

 $r \in Z_p$

- binding Cannot generate collision (r, r', x, x', c) s.t.
 $\text{open}(r, x, c) = 1$
 $\text{open}(r', x', c) = 1$

Pedersen Commitment:

Uses $h \in G$ (an alternate generator)

$\text{Com}_r(x) = g^x h^r$ hiding

$\text{open}(r, x, c)$: check $c = g^x h^r$

Hiding:

Given x, bijective from r to c.

$\delta_x(r) = g^x h^r$

$\text{h} = g^x$

$g^x g^r = g^{x+r}$

Binding:

Reduction to Discrete Log

New proof technique!!

Suppose A is

$\text{Adv}^\text{Binding}_A = \Pr[\text{com}_r(x, s_1, x, x) \leftarrow A(m) \text{ and } \text{open}(r, x, c) = 1, \text{open}(r, x, c) = 1]$

Then, we construct A' that wins DLOG

$A'(X) \leftarrow \text{group elem}$

$\text{goal: output } x \text{ s.t. } X = g^x$

Let $h = X$

(recur)
\((c, r_1, r_2, x_1, x_2) \subseteq A(l, u) \)

\[c = g^{x_1}h = g^{x_2}h \]

Solve:

\[x = (x_1 - x_2)/(r_2 - r_1) \]

\[x = g^{x_1}h \]

\[x = g^{x_2}h \]

Output \(x \). Solution

\(\exists (x, r) \subseteq (x, r) : C = g^{x_1}h \leq 3 \)