
Parts of this work previously appeared at ACM CCS 2006 [BN06] and CT-RSA 2007 [BN07]. This
is the full version.

New Multi-Signature Schemes

and a General Forking Lemma

Mihir Bellare1 Gregory Neven2

July 2005

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive,
La Jolla, California 92093, USA. Email: mihir@cs.ucsd.edu. URL:

http://www.cs.ucsd.edu/users/mihir.
2 Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001

Heverlee-Leuven, Belgium, and Département d’Informatique, Ecole normale supérieure, 45 rue d’Ulm, 75005
Paris, France. Email: Gregory.Neven@esat.kuleuven.be. URL: http://www.neven.org.

Abstract

A multi-signature scheme enables a group of signers to produce a compact, joint signature on
a common document, and has many potential uses. However, existing schemes impose key setup
or PKI requirements that make them impractical, such as requiring a dedicated, distributed key
generation protocol amongst potential signers, or assuming strong, concurrent zero-knowledge
proofs of knowledge of secret keys done to the CA at key registration. These requirements limit
the use of the schemes. We provide a new scheme that is proven secure in the plain public-
key model, meaning requires nothing more than that each signer has a (certified) public key.
Furthermore, the important simplification in key management achieved is not at the cost of
efficiency or assurance: our scheme matches or surpasses known ones in terms of signing time,
verification time and signature size, and is proven secure in the random-oracle model under a
standard (not bilinear map related) assumption. The proof is based on a simplified and general
Forking Lemma that may be of independent interest. We also present a second, slightly less
efficient scheme whose security is tightly related to the decisional Diffie-Hellman problem.

Since verification of a multi-signature still requires knowledge of all public keys, and since
identity strings are likely to be much shorter than randomly generated public keys, the identity-
based paradigm is particularly appealing for the case of multi-signatures. We present and prove
secure an identity-based multi-signature scheme based on RSA, which in particular does not rely
on (the rather new and untested) assumptions related to bilinear maps.

i

mailto:mihir@cs.ucsd.edu
mihir@cs.ucsd.edu
http://www.cs.ucsd.edu/users/mihir
mailto:Gregory.Neven@esat.kuleuven.be
Gregory.Neven@esat.kuleuven.be
http://www.neven.org

Contents

1 Introduction 1

2 Notation and Standard Definitions 8

3 A Simple and General Forking Lemma 9

4 Example Application to Schnorr Signatures 12

5 Multi-Signatures 14

6 A Multi-Signature Scheme based on Discrete Logarithms 15

7 A Scheme with Tight Reduction to DDH 20

8 An Identity-Based Scheme from RSA 24

A Expected-Time Forking Lemma 35

B Generic Constructions 36

ii

1 Introduction

Consider entities 1, . . . , N , each having a public key and corresponding secret key. A multi-signature
(MS) scheme allows any subset L ⊆ {1, . . . , N} of them, at any time, to engage in an interactive
protocol whose output is a joint signature on a message m of their choice. Verification can be done
by any external party given just L,m, the purported multi-signature σ, and the public keys of all
signers in L. Such a system could be useful for contract signing, co-signing, or distribution of a
certificate authority.

A trivial way to implement a multi-signature scheme is to let the multi-signature σ of message
m be the list (σi : i ∈ L) where σi is i’s signature on m. This multi-signature is however large, in
particular of size proportional to the number |L| of signers. There are several important practical
reasons for which this is costly and undesirable. For example, on wireless devices such as PDAs, cell
phones, RFID chips and sensors, battery life is the main limitation. Communicating even one bit
of data uses significantly more power than executing one 32-bit instruction [BA03]. Reducing the
number of bits to communicate saves power and is important to increase battery life. Also, in many
settings, communication is not reliable, and so the fewer the number of bits one has to communicate,
the better. For such reasons, we want multi-signature schemes that are non-trivial, meaning the size
of the multi-signature is about the same as that of a single ordinary signature and in particular not
proportional to the number |L| of signers.

Rogue-key attacks. The early literature of MS schemes [IN83, Har94, LHL95, HMP95, Lan96,
MH96, OO91, OO99] features numerous attacks breaking proposed schemes. In most cases, this was
due to weaknesses related to key setup, in particular the ability to mount a rogue-key attack. In
such an attack, an adversary who is a group member (insider) chooses its public key as a function
of that of honest users in such a way that it can then easily forge multi-signatures. Although
they might at first hearing sound far-fetched, rogue-key attacks are in fact possible to mount in
practice and are a real threat. When, eventually, precise definitions [MOR01] and proven secure
schemes [MOR01, Bol03, LOS+06] emerged, they obviously paid a lot of attention to key setup.
These schemes were, happily, proven secure against rogue-key attacks, but, unhappily, at the cost
of complexity and expense in the scheme, or using unrealistic and burdensome assumptions on the
public-key infrastructure (PKI), as we will now explain in detail.

Drawbacks of previous schemes. The MS-MOR [MOR01] scheme requires, as a pre-processing
step, that the set of potential signers engages in an interactive key generation protocol that provides
to each a public and secret key. The purpose of the protocol is to ensure that no dishonest player
can choose its public key as a function of public keys of honest players. This type of dedicated key
generation is however not practical for several reasons. First, it means the group of potential signers
is restricted to being static: it must be decided and fixed before signing can start, and new signers
cannot be added later. However, in practice the potential set of signers is dynamic and may not be
known ahead of time, and we would like to be able to add potential signers at will. Second, the key
generation protocol of [MOR01] is expensive and results in large, complex public keys. In particular,
the public key of each signer has a size that depends on the number N of potential signers. (However,
once keys are established, multi-signature generation and verification are actually attractively cheap.)

The drawback of the MS-Bo [Bol03] and MS-LOSSW [LOS+06] MS schemes is that the security
model makes the knowledge of secret key (KOSK) assumption. There is no dedicated key generation,
but, when the adversary, mounting a rogue-key attack, provides a public key of its choice for a
group member, it is required, in the model, to provide also a matching secret key. Of course “real”
adversaries would not do any such thing, so what does this mean? It is explained by the authors
as modeling the assumption that a user provides the certification authority (CA) with a proof of
knowledge of its secret key before the CA certifies the corresponding public key. However, it is not

1

that simple. The current implementation of these proofs is represented by standards PKCS#10
[PKC00] —used by VeriSign— and RFC 4210/11 [AFKM05, Sch05]. Here the proof is implemented
by having the user send the CA a signature, under the public key it is attempting to get certified,
of some message that includes the public key and the user identity. While such methods might
intuitively seem to prove knowledge of the secret key, they do not suffice to realize the abstract
model of [Bol03, LOS+06] in which the attacker actually hands the challenger the secret keys. In
particular, not only does this type of proof of possession not suffice to prove secure the MS-Bo and
MS-LOSSW schemes, but there are actually attacks against these schemes if such proofs of possession
are used [BRY06]. (That is, if we attempt to drop the KOSK assumption and substitute these proofs
of possession instead.) To obtain proofs of possession sufficient to implement the KOSK assumption,
it appears one should use zero-knowledge (ZK) proofs of knowledge (POKs) that meet strong, formal
extractability requirements [BG92]. However, that is not all. Since in practice we would expect that
the users may register keys at any time, concurrently with other users or with executions of the
multi-signature protocol, one would require ZK POKs extractable under such concurrent conditions.
This eliminates many standard protocols, including standard POKs of discrete logarithms. Still, it is
true that protocols with the desired properties do seem to exist. For example, in the random-oracle
model one could use [Fis05] or, in the standard model, non-interactive ZK POKs [DP92]. But the
first is not cheap and the second is prohibitive, and even if one were willing, adding them to the
PKI requires modifying the client and CA functioning and software, which is difficult, costly and
preferably avoided. Also, one is still left with the task of actually formally justifying a claim that
this would implement the abstract KOSK model of [Bol03, LOS+06]. (We are not making such a
claim here.) However, the main reason this route is impractical is simply that CAs do not right now
implement such POKs. If, today, some corporation or person wishes to implement a MS scheme, it
seems unlikely that VeriSign is going to oblige them by suddenly changing their offerings to include
appropriate POKs of secret keys at registration.

Our MS-DL scheme. In summary, the most significant practical obstacle to multi-signatures at
present is the key-setup requirements or assumptions of previous works. Our first contribution
is to remove this obstacle by presenting a multi-signature scheme in the plain public-key model.
This means that, with regard to key setup, nothing more is required than in any usage of public-
key cryptography, namely that any potential signer has a public key. There is no dedicated key
generation protocol. A signer is not assumed to have proved knowledge of its secret key to the CA,
but only to have a standard certificate. Yet, security against rogue-key attacks is proved without the
KOSK assumption.

To elaborate, in our setting, the group of potential signers is dynamic: anyone possessing a
(certified) public key can join at any time. In our security model, the adversary can corrupt a signer
and choose its public key as a function of those of other (honest) signers. It is not required to supply
the challenger with a matching secret key, meaning we prove security even when the adversary does
not know the secret key underlying a public key it makes for itself. The fact that we do not need to
assume any kind of proof-of-knowledge of the secret key performed to the CA at the time a public key
is registered and a certificate is obtained reduces the demands on the PKI and allows our protocols
to be implemented within the current PKI. CAs need not take any special actions or change their
functioning or software. Indeed, a CA does not need to even know that a key is to be used in our
multi-signature scheme; it can be treated like any other key.

MS-DL is based on the Schnorr [Sch91] scheme and is proven secure in the random-oracle (RO)
model [BR93] assuming hardness of the standard discrete logarithm problem. (MS-Bo and MS-MOR
also use the RO model, but MS-LOSSW does not.) MS-DL allows secure concurrent executions
of signing protocols by different subsets of the set of potential signers, which is important because
applications on the Internet are inherently placed in a concurrent execution environment. Concurrent

2

signing is explicitly disallowed in [MOR01]. Security of our scheme is proved even when the adversary
can control the scheduling and mount rogue-key attacks, yet without the KOSK assumption.

A scheme with tight security. Being based on the Schnorr signature scheme, our MS-DL
scheme unfortunately inherits its loose reduction to the discrete logarithm problem. We present a
second scheme called MS-DDH based on a signature scheme of Katz and Wang [KW03] that has a
tight security reduction to the DDH problem. Even though requiring slightly more computations
than MS-DL, the MS-DDH could end up being more efficient because one can use smaller security
parameters. Note that none of the previous MS schemes of [MOR01, Bol03, LOS+06] had tight
reductions to the underlying hard problem.

Identity-based multi-signatures. To verify the validity of a multi-signature, one still needs the
public keys of all cosigners. In most applications these public keys will have to be transmitted along
with the multi-signature, possibly with their associated certificate chains. This partially defeats the
primary purpose of using a multi-signature scheme, namely to save on bandwidth. The inclusion
of some information that uniquely identifies the cosigners is inevitable for verification, but usually
signers can be identified more succinctly than by their public keys, e.g. by their user names or IP
addresses.

Identity-based signatures. In an identity-based signature scheme [Sha85], the public key of a
user is simply his identity, e.g. his name, email or IP address. A trusted key distribution center
provides each signer with the secret signing key corresponding to his identity. When all signers have
their secret keys issued by the same key distribution center, individual public keys become obsolete,
removing the need for explicit certification and all associated costs. These features make the identity-
based paradigm particularly appealing for use in conjunction with multi-signatures, leading to the
concept of identity-based multi-signature (IBMS) schemes.

Generic constructions. In spite of their appeal with regard to applications, implementations of
IBMS schemes are rather limited. As demonstrated in [DKXY03, BNN04], any standard signature
scheme can be transformed into an identity-based one using the “certification paradigm”. One can
attempt to derive IBMS schemes from existing standard MS schemes via this approach [GHK06]. The
problem is that the resulting multi-signature is not compact due to the need to include the certificates
with each signature. Even if the signatures in the certificates can be aggregated [BGLS03], the public
keys they contain cannot. In summary, unlike the case of standard signatures, there seems no trivial,
general way to transform compact signature schemes into identity-based ones.

An existing construction. The only provably secure IBMS scheme known today is due to Gentry
and Ramzan [GR06]. The scheme employs groups with bilinear maps (also known as pairings), which
are usually implemented by modified Weil or Tate pairing over elliptic or hyperelliptic curves. To
avoid putting all our eggs in the same basket, it is common practice in cryptography to try to find
alternative constructions of a primitive based on different assumptions. While pairings have turned
out extremely useful in the design of cryptographic protocols, they were only recently brought to the
attention of cryptographers [Jou00], and hence did not yet enjoy the same exposure to cryptanalytic
attacks by experts as other, older problems from number theory such as discrete logarithms, factoring
and RSA. This exposure is necessary to build confidence in the hardness of the underlying problems;
without it, their use in high-security applications may not be advisable.

Also, efficient implementations of RSA are ubiquitous, even in the public domain, while im-
plementations of pairings are much harder to come by. Unlike RSA, even building an inefficient
prototype implementation of pairings is far from straightforward for anyone but an expert, and even
then it is often difficult or impossible to generate curves with the desired security parameters [GPS06].
Companies may have invested in expensive hardware or software implementations of RSA, and may

3

Scheme Sign Verify |sig| |pk| |par| Key setup Assump

MS-MOR 1 exp 1 exp 2 · 160 [3 + 2 lg(nmax)] · 160 160 dedicated key-reg DL

MS-Bo 1 exp 2 pr 160 6 · 160 6 · 160 KOSK model (co)CDH

MS-LOSSW 3 exp 2 pr 7 · 160 6 · 160 162 · 160 KOSK model (co)CDH

MS-DL 1 exp 1 exp 2 · 160 160 160 plain pk model DL

MS-DDH 2 exp 2 exp 3 · 160 2 · 160 160 plain pk model DDH

IBMS-GR 2 exp 3 pr 2 · 160 0 6 · 160 ? ID-based (co)CDH

IBMS-GQ 1 exp 1 exp 1024 + 160 0 1024 + 160 ID-based RSA

Table 1: MS scheme comparisons. We compare the efficiency of our MS-DL and MS-DDH schemes
against the MS-MOR [MOR01], MS-Bo [Bol03], and MS-LOSSW [LOS+06] schemes, and that of our
identity-based IBMS-GQ scheme against the IBMS-GR [GR06] scheme. For each scheme we show
the computational cost of signing (per signer), the computational cost of verification of a multi-
signature, the size of a multi-signature, the size of the public key of an individual signer, the size of
the system parameters common to all signers, the type of key-setup, and the assumption used to prove
security. All sizes are in bits. By “exp” we mean an exponentiation. (Some of the exponentiations
are actually multi-exponentiations, but these have the same cost as single exponentiations.) nmax

is the total number of signers in the system. By “pr” we mean a pairing, whose cost estimate is
6–20 exponentiations. We assume we work over a 160-bit elliptic-curve (EC) group for the DL-based
schemes. For the coCDH-based schemes we assume an asymmetric pairing, that is, e: G1×G2 → GT

with G1 6= G2 (this to make the signatures as short as possible) and an isomorphism ψ: G2 → G1

(this to make the proofs go through) with group-element representation sizes in G1,G2 and GT

being, respectively, 160-bits, 6 ·160 bits and 6 ·160 bits, which is what is needed, in this asymmetric-
with-isomorphism setting, to provide the 1024-bit RSA level of security achieved by 160-bit EC
groups [GPS06]. For RSA-based schemes, we assume a modulus N and public exponent e of sizes
1024 and 160 bits, respectively.

be reluctant to reinvest in new pairing implementations.

Efficiency and other scheme attributes. The significant gains in key setup achieved by our
MS scheme are not at the cost of performance. As Table 1 indicates, our first scheme, denoted
MS-DL, compares favorably with previous ones in terms of signing time, verifying time, signature
size and other attributes. We now discuss the information in the table in a little more depth.

Unlike [Bol03, LOS+06], we do not use pairings (bilinear maps), which not only results, for us,
in greater efficiency and ease of implementation, but also means we do not rely on the relatively new
and untested hardness assumptions related to pairing-based cryptography. Verification in MS-DL is
cheaper than in MS-Bo, and both signing and verification are cheaper in MS-DL than in MS-LOSSW.
We have included the system parameter size in the table mainly to note that this is very large (25,920
bits) for MS-LOSSW, unlike for any other scheme. Our signatures are 320 bits as opposed to the 160
of MS-Bo because the latter uses the pairing-based BSL [BSL01] short signature scheme, but our gain
in verification time (by a factor of 12-40) more than compensates. The public keys in our scheme
are shorter than in any other scheme, an important benefit in case they have to be transmitted with
the multi-signature. Additionally, of course, MS-DL is in the plain public-key model. Our efficiency
estimates do not take security into account, meaning that all schemes are not necessarily compared
at the same level of security. We do this as we do not think our analyses are tight (that is, the real
security is better) and thus comparing at the same level would be misleading for practice.

New Forking Lemma. Our proof of security of the MS-DL scheme relies on a generalization of
the Forking Lemma of [PS00] that may be of independent interest. The original Forking Lemma of

4

Pointcheval and Stern [PS00] applies to signature schemes obtained from three-move identification
schemes via the Fiat-Shamir [FS87] transform in the random oracle model. Roughly it says that in
an expected O(1/ε) repeated executions of a forger A with success probability ε, one can find two
accepting conversations that agree in the first prover move but not the verifier challenge, leading,
via the special soundness property of Σ protocols, to recovery of the secret key and hence a proof
of security of the signature scheme in the RO model. This lemma has been important in proving
security of signature schemes via the rewinding technique. However, the lemma seems hard (if
not impossible) to apply in situations like ours where we are not dealing with a regular signature
scheme but a MS scheme. Indeed, in the past, variants of the lemma had to be formulated and
proved for different types of signatures. (For example, a version for blind signatures is in [PS00],
and one for ring signatures in [HS03]. Another variant is in [?].) The statement of our Forking
Lemma (cf. Lemma 3.1), in contrast to previous ones, makes no mention of signatures or even, for
that matter, random oracles. Rather it asserts a simple lower bound on the probability that two
executions of an arbitrary algorithm on certain (related) inputs both accept. This statement, we feel,
distills the probabilistic essence of the Forking Lemma and divorces it from any particular application
context. (In our view, the Forking Lemma is something purely probabilistic, not about signatures.
Previous Forking Lemmas mixed these things up.) In this form, it can be be applied not only to
prove security of regular signature schemes but also, as we show, to prove security of schemes like
ours where the setting is more complex. Our Forking Lemma also provides worst-case rather than
expected-time guarantees on the constructed algorithm, in contrast to [PS00]. We feel this meshes
better with standard assumptions. (In using the Lemma of [PS00], you need to assume, say, hardness
of discrete-logarithm computations against expected-time adversaries. This assumption may be true,
but is not the standard one.) Our Forking Lemma can be viewed as an extension of the Reset Lemma
of [BP02], and our proof, which uses the techniques of the latter, is simpler than that of [PS00].

Relation to aggregate signatures. A natural thought is that multi-signatures are a special
case of aggregate signatures, and we know the latter have been implemented without the KOSK
assumption [BGLS03], so doesn’t this yield multi-signatures in the plain public-key model? Let us
explore this.

Suppose signer i has produced a BSL signature [BSL01] σi on a message mi (i = 1, . . . , n). The
procedure of [BGLS03] aggregates σ1, . . . , σn into a single, aggregate signature σ. Multi-signatures
is simply the special case where mi = m is a common message for all i ∈ L. Now, [BGLS03] do prove
security without the KOSK assumption, but for this need to assume that the messages m1, . . . ,mn

are distinct. So the multi-signature case is exactly the one where they do not have security without
the KOSK assumption. In fact, in this case, there actually is a rogue-key attack on the scheme.
Indeed, this MS scheme is exactly MS-Bo, which we know is not secure against rogue-key attack
without the KOSK assumption.

However, [BGLS03] also suggest a workaround to the message distinctness assumption. Have
each signer prepend its public key to its message before signing, so that the individual signatures
now are (in the MS case) on the enhanced messages pk1 ‖m, . . . , pk l ‖m. Now, security is guaranteed
as long as the enhanced messages are distinct. However, this is not enough for security against rogue
key attack in our plain public-key model. If an attacker, playing the role of signer 2, sets its public
key pk2 to equal the public key pk1 of honest user 1 (an easy task) and outputs some forgery on
some message m for some group including signers 1, 2, then we have a situation where two enhanced
messages are the same, so the result of [BGLS03] does not apply. To fix this one can use the analysis
of [?] that shows the scheme is secure even if enhanced messages are not distinct, and then we do
obtain a secure MS scheme. However, verification of a multi-signature for n signers costs n + 1
pairings, making it substantially less efficient than all the other schemes we have discussed, where
verification time does not depend on the number of signers in the group.

5

Another potential route to multi-signatures is via sequential aggregate signatures [LMRS04].
These can be built from trapdoor permutation families in which there is a single domain underlying
the entire family [LMRS04], but in fact there seems to be no example of such a family. RSA does not
have the desired property. The authors build some RSA-based schemes directly, another one can be
constructed using techniques from [HOT04]. Some limitations of the schemes of [LMRS04] are lifted
in [?]. However, a sequential-aggregate based MS scheme will require a number of communication
rounds proportional to the number n of signers involved in a signature, as well as n applications of
the trapdoor function to verify, while all previous protocols, including ours, are constant-round and
have constant verification cost.

With the increased adoption of small, energy-restricted devices such as laptops, cell phones, PDAs
and sensors, battery life has become a crucial bottleneck in the usage of these devices — and an im-
portant distinguishing factor in their sales. Fast progress is being made in the development of lighter
and higher-capacity batteries, but at the same time the demand for energy-preserving technology is
more pressing than ever. Much effort is being put in the design of low-power microprocessors, but
also the software running on these processors is being optimized for energy consumption, rather than
for speed or portability.

In accordance with their wireless nature, communication on these portable devices often takes
place over wireless channels such as Bluetooth and WiFi. Unfortunately, these communication
mechanisms are rather expensive in terms of energy consumption. Reducing the number of bits
to communicate is crucial to increase battery life: communicating a single bit of data requires
significantly more power than executing a 32-bit instruction [BA03], so it makes perfect sense to invest
extra computation cycles to save on bandwidth. Also, communication is often not reliable, so the
fewer the number of bits one has to communicate, the better. To make things worse, wireless channels
are inherently vulnerable to eavesdropping and tampering attacks by outsiders. Strong cryptography
is needed to protect the communication, adding even more overhead to the communication. It is our
challenge as designers of cryptographic primitives to limit this overhead to a minimum.

Multi-signature schemes. A multi-signature (MS) scheme [IN83] allows n different signers with
public keys pk1, . . . , pkn to collectively sign a message m, yielding a multi-signature σ of roughly
the same size as a standard signature, yet that certifies m under all public keys pk1, . . . , pkn simul-
taneously. By transmitting σ instead of n individual signatures, multi-signature schemes can help
greatly to save on communication costs.

However, one still needs the public keys of all cosigners in order to verify the validity of such
a multi-signature. In most applications these public keys will have to be transmitted along with
the multi-signature, which partially defeats the primary purpose of using a multi-signature scheme,
namely to save on bandwidth. The inclusion of some information that uniquely identifies the cosigners
seems inevitable for verification, but often this information can be represented more succinctly than
by means of randomly generated public keys. For example, the signers’ user names or IP addresses
could suffice for this purpose; this information may even already be present in package headers.
Moreover, each public key may come with an associated certificate containing a signature from a
certification authority (CA) and the CA’s public key, which on its turn may come with a chain of
certificates leading to the root CA. Altogether, this sums up to many more bits being transmitted
than strictly necessary to authenticate the message.

Identity-based signatures. In an identity-based signature scheme [Sha85], the public key of a
user is simply his identity, e.g. his name, email or IP address. A trusted key distribution center
provides each signer with the secret signing key corresponding to his identity. When all signers have
their secret keys issued by the same key distribution center, individual public keys become obsolete,
removing the need for explicit certification and all associated costs. These features make the identity-

6

based paradigm particularly appealing for use in conjunction with multi-signatures, leading to the
concept of identity-based multi-signature (IBMS) schemes.

Generic constructions. In spite of their appeal with regard to applications, implementations of
IBMS schemes are rather limited. As demonstrated in [DKXY03, BNN04], any standard signature
scheme can be transformed into an identity-based one using the “certification paradigm”. One can
attempt to derive IBMS schemes from existing standard MS schemes via this approach [GHK06]. The
problem is that the resulting multi-signature is not compact due to the need to include the certificates
with each signature. Even if the signatures in the certificates can be aggregated [BGLS03], the public
keys they contain cannot. In summary, unlike the case of standard signatures, there seems no trivial,
general way to transform compact signature schemes into identity-based ones.

An existing construction. The only provably secure IBMS scheme known today is due to Gentry
and Ramzan [GR06]. The scheme employs groups with bilinear maps (also known as pairings), which
are usually implemented by modified Weil or Tate pairing over elliptic or hyperelliptic curves. To
avoid putting all our eggs in the same basket, it is common practice in cryptography to try to find
alternative constructions of a primitive based on different assumptions. While pairings have turned
out extremely useful in the design of cryptographic protocols, they were only recently brought to the
attention of cryptographers [Jou00], and hence did not yet enjoy the same exposure to cryptanalytic
attacks by experts as other, older problems from number theory such as discrete logarithms, factoring
and RSA. This exposure is necessary to build confidence in the hardness of the underlying problems;
without it, their use in high-security applications may not be advisable.

Also, efficient implementations of RSA are ubiquitous, even in the public domain, while im-
plementations of pairings are much harder to come by. Unlike RSA, even building an inefficient
prototype implementation of pairings is far from straightforward for anyone but an expert, and even
then it is often difficult or impossible to generate curves with the desired security parameters [GPS06].
Companies may have invested in expensive hardware or software implementations of RSA, and may
be reluctant to reinvest in new pairing implementations.

Our contributions. We present an efficient and provably secure IBMS scheme based on RSA,
which is thereby the first provably secure IBMS scheme not relying on the use of pairings. Our scheme
is essentially a multi-signature variant of the Guilliou-Quisquater (GQ) identity-based signature
scheme [GQ90], strengthened with techniques from [BN06] to provide security against concurrent
attacks. Unstrengthened variants of our scheme were proposed before (but without security proofs)
in [GQ90, CJKT06]. The proof makes use of the general forking lemma of [BN06], which, unlike the
original forking lemma by Pointcheval and Stern [PS00], applies to more general contexts than generic
standard signature schemes. Signatures under our scheme are 1184 bits long for typical values of the
security parameters, which is longer than the 320-bit signatures of the scheme of [GR06]. Verification
on the other hand is considerably cheaper: our scheme needs only a single (multi-) exponentiation
in an RSA group, as opposed to three pairing computations for the scheme of [GR06]. The cost of
one pairing computation is roughly that of 6–20 exponentiations.

We prove our scheme secure in the random oracle model under the one-wayness of RSA. Unlike
the scheme of [GR06], our scheme requires the signers to interact to generate a signature, so we
had to extend their security notion to model this interaction in the presence of an adversary, taking
inspiration from the (non-identity-based) notions of [MOR01, BN06]. We consider the strongest
possible setting, namely with insecure and unauthenticated communication links controlled by the
adversary, without assuming the availability of a trusted broadcast primitive. In fact, we distinguish
between two different notions, called single-signer and multi-signer security, based on the number of
signers whose role can be played by the signing oracle. While not obvious at first, we prove that these
notions are in fact equivalent, so that we can prove our scheme secure under the simpler single-signer

7

notion. As in [BN06], but unlike [MOR01], we allow the adversary to concurrently engage in as many
arbitrarily interleaved signature protocols as it wants.

Interactive vs. non-interactive schemes. As noted above, our scheme requires the signers to
interact in order to generate a signature. The IBMS scheme of [GR06] is non-interactive, meaning
that each signer independently computes its share to the signature, and anyone can combine these
shares into a compact signature. The requirement of interaction may seem to conflict with our goal
of saving on bandwidth. We argue that this is not always the case. Consider for example a wired
network of sensors in a very remote location (e.g. in a desert, or in space) that needs to report
back to a far-away base station through wireless communication. The sensors can use the cheap
wired network to execute joint signing protocols and send the resulting compact signatures over the
expensive wireless channel. A non-interactive scheme does not offer any real advantage here. In
particular, it does not remove the need for local communication: the sensors still need a round of
interaction to exchange signature shares. In general, the added cost of interaction depends highly
on the network topology.

Aggregate vs. multi-signatures. Aggregate signature (AS) schemes [BGLS03] can be seen as
a generalization of multi-signatures where each signer i signs a different message mi. Only a single
identity-based aggregate signature (IBAS) scheme is known [GR06]; it is also based on pairings. IBAS
schemes automatically give rise to IBMS schemes, but the scheme resulting from the only known IBAS
instantiation [GR06] is less efficient than their direct IBMS construction. We note that the distinction
between aggregate and multi-signatures becomes irrelevant for interactive schemes. Indeed, one can
easily construct an interactive aggregate signature scheme from a multi-signature scheme by letting
the signers, in a first round of communication, inform each other about the messages mi they are
about to sign. The common message m can then be taken to be the concatenation of (ID i,mi)
tuples. Hence, the single-message restriction of multi-signature schemes is not really limiting in the
case of interactive schemes.

Other related work. Cheng et al. [CLW05] recently proposed another interactive IBMS scheme
based on pairings, but proved it secure only under a weak variant of selective-ID security. To the
best of our knowledge, the schemes of [CLW05, GR06] are the only instantiations of IBMS in the
literature.

There is more work on compact signature schemes in the non-identity-based setting. There is a
vast literature on MS schemes, but the only provably secure schemes are those of [MOR01, Bol03,
LOS+06, BN06]. The schemes of [Bol03, LOS+06] are based on pairings, those of [MOR01, BN06]
on discrete logarithms. In a sequential aggregate signature (SAS) scheme [LMRS04], aggregation
cannot be performed by an outsider; instead, the signers cooperate, each in turn aggregating their
signature into the current aggregate using their secret key. The only known instantiations of SAS
schemes are due to [LMRS04, LOS+06]. The scheme of [LMRS04] is based on families of certified
trapdoor permutations, of which strictly speaking no instantiations exist, but the authors discuss
how to instantiate their scheme with RSA. The scheme of [LOS+06] uses pairings, and is the only
one with security in the standard (i.e., non-random-oracle [BR93]) model.

2 Notation and Standard Definitions

Notation. Let N = {1, 2, 3, . . .}. A string means a binary one. The empty string is denoted ε.
If x, y are strings, then |x| is the length of x. If x1, x2, . . . are objects then x1‖x2‖ . . . denotes an
encoding of them as strings from which the constituent objects are easily recoverable. If S is a

(multi)set, then |S| is its cardinality, s
$← S denotes the operation of assigning to s an element of S

chosen at random, and 〈S〉 is a unique encoding of S as a string. If A is a randomized algorithm,

8

then A(x1, . . . ; ρ) denotes its output on inputs x1, . . . and coins ρ, while y
$← A(x1, . . .) means that

we choose ρ at random and let y = A(x1, . . . ; ρ).

Standard digital signatures. We recall the standard definition of unforgeability under chosen-
message attack following [GMR88]. A digital signature scheme DS = (Kg, Sign,Vf) is a triple of

algorithms. The signer generates a key pair (pk , sk)
$← Kg and signs a messagem via σ ← Sign(sk ,m).

Verification is done by checking that Vf(pk ,m, σ) returns 1, indicating acceptance. The advantage of
a forging algorithm F in breaking the existential unforgeability under chosen-message attack (uf-cma)
of DS is defined as

Advuf-cma
DS (F) = Pr

[
Vf(pk ,m, σ) = 1 and

F did not query Sign(sk ,m)
: (pk , sk)

$← Kg ; (m,σ)
$← FSign(sk ,·)(pk)

]
where Sign(sk , ·) is a signing oracle under sk . In the random oracle model [BR93], the Sign and Vf
algorithms, as well as the forger, additionally have access to a random oracle H. We say that forger
F (t, qS, qH, ε)-breaks DS if it runs in time at most t, makes at most qS queries to the signing oracle
and qH queries to the random oracle, and has advantage Advuf-cma

DS (F) ≥ ε. The scheme DS is said
to be (t, qS, qH, ε)-secure if there exists no forger F who (t, qS, qH, ε)-breaks it.

3 A Simple and General Forking Lemma

We state our Forking Lemma here. We will use this lemma to prove the security of our multi-signature
scheme in the next section, and then come back to prove the Forking Lemma itself in Section 3. Our
Forking Lemma, unlike that of Pointcheval and Stern [PS00], makes no mention of signature schemes
or random oracles, but rather concentrates on the output behavior of an algorithm when run twice
on related inputs. This makes it easily applicable in contexts other than standard signature schemes,
and separates the probabilistic analysis of the rewinding from the actual simulation in the security
proof, allowing for more modular (and hence easier to verify) proofs. In the following, think of x as
a public key and h1, . . . , hq as replies to queries to a random oracle.

Lemma 3.1 [General Forking Lemma]Fix an integer q ≥ 1 and a set H of size h ≥ 2. Let A be
a randomized algorithm that on input x, h1, . . . , hq returns a pair, the first element of which is an
integer in the range 0, . . . , q and the second element of which we refer to as a side output. Let IG be
a randomized algorithm that we call the input generator. The accepting probability of A, denoted
acc, is defined as the probability that J ≥ 1 in the experiment

x
$← IG ; h1, . . . , hq

$← H ; (J, σ)
$← A(x, h1, . . . , hq) .

The forking algorithm FA associated to A is the randomized algorithm that takes input x proceeds
as follows:

Algorithm FA(x)
Pick coins ρ for A at random

h1, . . . , hq
$← H

(I, σ)← A(x, h1, . . . , hq; ρ)

If I = 0 then return (0, ε, ε)

h′I , . . . , h
′
q

$← H

(I ′, σ′)← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

If (I = I ′ and hI 6= h′I) then return (1, σ, σ′)
Else return (0, ε, ε).

9

Let

frk = Pr
[
b = 1 : x

$← IG ; (b, σ, σ′)
$← FA(x)

]
.

Then

frk ≥ acc ·
(

acc

q
− 1

h

)
. (1)

Alternatively,

acc ≤ q

h
+
√
q · frk . (2)

When using this lemma in a security proof, we will typically take an adversary attacking our scheme
and build from it an algorithm A that fits the assumptions of the lemma above. Intuitively, h1, . . . , hq
will be the replies to random oracle queries made by the original adversary, who will now be executed
by A. The forking adversary implements the rewinding. It is important above that the two executions
of A performed by FA use the same coins ρ. We have left to prove our Forking Lemma. Before doing
so, we recall two sublemmas that we will use in the proof. The first is a standard fact. One can
derive it from Jensen’s inequality, or as a consequence of the fact that the variance of any random
variable is non-negative. For the sake of self-containment we provide a direct proof based on the last
approach.

Lemma 3.2 Let X be a real-valued random variable. Then E
[
X2
]
≥ E [X]2.

Proof of Lemma 3.2: Let µ = E [X]. The random variable (X − µ)2 is non-negative. Thus

0 ≤ E
[
(X − µ)2

]
= E

[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE [X] + µ2

= E
[
X2
]
− 2µ2 + µ2 = E

[
X2
]
− µ2 ,

and thus E
[
X2
]
≥ µ2.

We will use the above directly, and also use the following corollary. (It is used also in [AR00] where
it is proved differently.)

Lemma 3.3 Suppose q ≥ 1 is an integer, and x1, . . . , xq ≥ 0 are real numbers. Then

q∑
i=1

x2i ≥
1

q
·

(
q∑
i=1

xi

)2

.

Proof: Let X be the random variable that takes value xi with probability 1/q for each 1 ≤ i ≤ q.
Then

E
[
X2
]

=
1

q
·

q∑
i=1

x2i and E [X]2 =
1

q2
·

(
q∑
i=1

xi

)2

.

Now apply Lemma 3.2.

We are now ready to prove our Forking Lemma.

Proof of Lemma 3.1: We first establish Equation (1) and then show that it implies Equation (2).For
any input x let

acc(x) = Pr
[
J ≥ 1 : h1, . . . , hq

$← H ; (J, σ)
$← A(x, h1, . . . , hq)

]
frk(x) = Pr

[
b = 1 : (b, σ, σ′)

$← FA(x)
]
.

10

We claim that for all x,

frk(x) ≥ acc(x) ·
(

acc(x)

q
− 1

h

)
. (3)

Then, with the expectation taken over x
$← IG, we have

frk = E [frk(x)] ≥ E

[
acc(x) ·

(
acc(x)

q
− 1

h

)]
=

E
[
acc(x)2

]
q

− E [acc(x)]

h
≥ E [acc(x)]2

q
− E [acc(x)]

h
= acc ·

(
acc

q
− 1

h

)
.

This establishes Equation (1). Above, we used Equation (3), Lemma 3.2 and also the fact that
E [acc(x)] = acc.

We proceed to the proof of Equation (3). For any input x, with probabilities taken over the coin
tosses of FA we have

frk(x) = Pr
[
I = I ′ ∧ I ≥ 1 ∧ hI 6= h′I

]
≥ Pr

[
I = I ′ ∧ I ≥ 1

]
− Pr

[
I ≥ 1 ∧ hI = h′I

]
= Pr

[
I = I ′ ∧ I ≥ 1

]
− Pr [I ≥ 1]

h
= Pr

[
I = I ′ ∧ I ≥ 1

]
− acc(x)

h
.

It remains to show that Pr [I = I ′ ∧ I ≥ 1] ≥ acc(x)2/q. Let R denote the set from which A draws
its coins at random. For each i ∈ {1, . . . , q} let Xi: R×H i−1 → [0, 1] be defined via

Xi(ρ, h1, . . . , hi−1) = Pr
[
J = i : hi, . . . , hq

$← H ; (J, σ)← A(x, h1, . . . , hq; ρ)
]

for all ρ ∈ R and h1, . . . , hi−1 ∈ H. Regard Xi as a random variable over the uniform distribution
on its domain. Then

Pr
[
I = I ′ ∧ I ≥ 1

]
=

q∑
i=1

Pr
[
I = i ∧ I ′ = i

]
=

q∑
i=1

Pr [I = i] · Pr
[
I ′ = i : I = i

]
=

q∑
i=1

∑
ρ,h1,...,hi−1

Xi(ρ, h1, . . . , hi−1) ·Xi(ρ, h1, . . . , hi−1) ·
1

|R| · |H|i−1

=

q∑
i=1

E
[
X2
i

]
≥

q∑
i=1

E [Xi]
2 ,

where in the last step we used Lemma 3.2. Now let xi = E [Xi] for i ∈ {1, . . . , q}, and apply
Lemma 3.3. We get

q∑
i=1

E [Xi]
2 ≥ 1

q
·

(
q∑
i=1

E [Xi]

)2

=
1

q
· acc(x)2 .

This completes the proof of Equation (3) and thus of Equation (1). We now show how to obtain
Equation (2). Using Equation (1) we have

(
acc− q

2h

)2
= acc2 − q

h
· acc +

q2

4h2
≤ q · frk +

q2

4h2
.

11

Algorithm Kg

g
$← G∗ ; x

$← Zp ; X ← gx

pk ← (G, p, g,X)
sk ← (G, p, g, x)
Return (pk , sk)

Algorithm SignH(sk ,m)
Parse sk as (G, p, g, x)

r
$← Zp ; R← gr

s← r + x ·H(R ‖m) mod p
Return (R, s)

Algorithm VfH(pk ,m, σ)
Parse pk as (G, p, g,X)
Parse σ as (R, s)
If R 6∈ G then return 0

If gs = RXH(R ‖m)

then return 1 else return 0

Figure 1: The Schnorr signature scheme Sch = (Kg,Sign,Vf), associated to group G of prime order
p and to integer ` ≥ 1. Here H: {0, 1}∗ → {0, 1}` is a random oracle.

Taking the square root of both sides, and using the fact that
√
a+ b ≤

√
a+
√
b for any real numbers

a, b ≥ 0, we get

acc− q

2h
≤

√
q · frk +

√
q2

4h2
=

q

2h
+
√
q · frk .

Re-arranging terms yields Equation (2).

4 Example Application to Schnorr Signatures

Let us do an example application to the Schnorr signature scheme [Sch90]. We begin by recalling
some necessary definitions. The scheme itself is depicted in Figure 1.

The discrete logarithm assumption. Let G be a multiplicative group of prime order p, and
let G∗ = G \ {1}. The advantage of algorithm A in solving the discrete logarithm problem in G is
defined as

Advdlog
G (A) = Pr

[
gx = y : g

$← G∗ ; y
$← G ; x

$← A(y)
]
.

We say that A (t, ε)-solves the discrete logarithm problem in G if it runs in time at most t and has

advantage Advdlog
G (A) ≥ ε, and we say that the discrete logarithm problem in G is (t, ε)-hard if no

algorithm A (t, ε)-solves it.

Application to Schnorr signatures. The following theorem states the security of the Sch
signature scheme. The result is known [PS00], but we present a simpler proof using our generalized
Forking Lemma.

Theorem 4.1 If the discrete logarithm problem in G is (t′, ε′)-hard, then the Sch signature scheme
associated to G and ` ∈ N is (t, qS, qH, ε)-secure whenever

ε′ ≤ ε2

qH + qS + 1
− 2qS

2k
− 1

2`
and t′ ≥ 2t+ 2qStexp +O(qH + qS + 1) .

Here, k = blog2 pc and texp is the time needed to compute an exponentiation in G.

Proof of Theorem 4.1: We prove the theorem by contradiction: given a forging algorithm B that
(t, qS, qH, ε)-breaks the Sch signature scheme, we build an algorithm D that (t′, ε′)-solves the discrete
logarithm problem in G with

ε′ ≥ ε2

qH + qS + 1
− 2qS

2k
− 1

2`
and t′ = 2t+ 2qStexp +O(qH + qS + 1) .

First consider algorithm A that takes input a public key (G, p, g,X) and h1, . . . , hqH+qS+1 ∈ H:

12

Algorithm A((G, p, g,X), h1, . . . , hqH+qS+1)
ctr ← 0 ; S ← ∅ ; bad ← false

Run B on input (G, p, g,X), answering its oracle queries as follows:
On query R ‖m to the hash oracle:

If T [R ‖m] = ⊥ then ctr ← ctr + 1 ; Rctr ‖mctr ← R ‖m ; T [R ‖m]← hctr
Return T [R ‖m] to B

On query m to the sign oracle:

ctr ← ctr + 1 ; s
$← Zp ; R← gsX−hctr ; S ← S ∪ {m}

If T [R ‖m] 6= ⊥ then bad ← true

T [R ‖m]← hctr ; Return (R, s)
Until B outputs (m, (R, s))
If T [R ‖m] = ⊥ then ctr ← ctr + 1 ; Rctr ‖mctr ← R ‖m ; T [R ‖m]← hctr
If (Vf(pk ,m, (R, s)) = 0 or m ∈ S or bad = true) then return (0, ε)
Let i be such that Ri ‖mi = R ‖m
Return (i, (s, hi))

Let IG be the algorithm that runs Kg to get (pk , sk) and outputs pk . Let acc be defined as in
Lemma 3.1. Note that

acc ≥ ε− Pr [bad = true] ≥ ε− qS(qH + qS + 1)

2k
.

Let FA denote the forking algorithm associated to A as per Lemma 3.1. (It takes input x = pk output
by IG.) Then we define our discrete logarithm finding algorithm as follows:

Algorithm D(G, p, g,X)

pk ← (G, p, g,X) ; (b, σ, σ′)
$← FA(pk)

If b = 0 then return 0 and halt
Parse σ as (s, h) and parse σ′ as (s′, h′)
// We know that there exists R ∈ G such that gs = RXh and gs

′
= RXh′

, and h 6= h′

Return (s− s′)(h− h′)−1 mod p

We will justify the comment in the code above later. Note that assuming it is true, the output of D
is the discrete logarithm (to base g) of X. Let frk be defined as in Lemma 3.1 based on FA. Then,
applying the lemma, we have that the advantage ε′ of D in solving the discrete logarithm problem
in G is

ε′ ≥ frk

≥ acc ·
(

acc

qH + qS + 1
− 1

2`

)
≥ ε2

qH + qS + 1
− 2qS

2k
− 1

2`

It remains to justify the comment in the code of D. The definition of FA, in combination with that of
A, tells us that if b = 1 then there are coins ρ for A, i ≥ 1, and h1, . . . , hqH+qS+1, h

′
i, . . . , h

′
qH+qS+1 ∈ H

with h = hi 6= h′i = h′ such that, in the execution of A((G, p, g,X), h1, . . . , hqH+qS+1; ρ), B out-
puts a valid forgery (m, (R, s)) with R ‖m = Ri ‖mi and T [R ‖m] = hi, and also, in the execu-
tion of A((G, p, g,X), h1, . . . , hi−1, h

′
i, . . . , h

′
qH+qS+1; ρ), B outputs a valid forgery (m′, (R′, s′)) where

R′ ‖m′ = R′i ‖m′i and T [R ‖m] = h′i. Since the two executions of A are identical until the i-th

13

random oracle query, the arguments of the i-th random oracle query in both executions Ri‖mi and
R′i‖m′i are identical as well. It follows that R = R′ and m′ = m and gs = RXh and gs

′
= RXh′ .

For the running time, we assume that an exponentiation in G takes time texp and all other operations
take unit time. The running time t′ of D is twice that of A plus O(qH + qS + 1). The running time
of A is t+ qStexp +O(qH + qS + 1).

5 Multi-Signatures

Here we provide our definitions for multi-signatures with security in the plain public-key model.

The model. Consider a group of signers signing the same message m, each having as input its own
public and secret key as well as a list of the public keys of the other signers. The signers want to
interact in a protocol which eventually outputs a compact signature σ that represents the signature
of each individual signer on the message m. We assume the signers are connected to each other via
point-to-point links over which they can send messages. We do not assume these links are secure
(that is, they are neither private nor authenticated) and we do not assume a broadcast primitive.
The signers interact for some number of rounds. In each round, view a signer as receiving a (but
not necessarily the same) message from every other signer, performing some computation, and then
sending a message to every other signer, except that in the first round the “received message” is the
party’s input (and so is not really received) and in the last round the “sent message” is a local output
(and so is not really sent). The local output is either ⊥ to indicate failure or is the compact signature
σ. Instances of the protocol may be executed concurrently, with one signer possibly participating in
several concurrent instances at the same time.

In describing protocols, we will have each signer assign indices 1, . . . , n to the signers, with itself
being signer 1. We clarify that these are local references to the cosigners participating in this protocol
instance. (That is, each signer in this protocol instance chooses its own indexing, so that signer 3
on my list and your list may not be the same. Think of the index a signer gives to its cosigners as
locally identifying the link over which they communicate.) These indices have no meaning outside
this protocol instance and have no certified relationship with the public keys. In particular, they are
not identities.

Formally a multi-signature scheme MS = (Pg,Kg,Sign,Vf) consists of four algorithms. A central
authority runs the parameter generation algorithm Pg to generate the system-wide parameters par .

Each signer independently generates its own public and private key pair via (pk , sk)
$← Kg(par). We

stress that this is a non-interactive process that can be performed by any signer at any given time.
New signers can join the system at will, and need not engage in expensive protocols with a CA or
with other signers to prove knowledge of the corresponding secret key before participating in signing
protocols. The Sign algorithm represents the signing protocol as indicated above. The verification
algorithm Vf takes as input a multiset of public keys L = {pk1, . . . , pkn}, the message m and a
candidate signature σ, and outputs 1 if σ is a valid signature for L and m, or outputs 0 otherwise.
(Because users may let their keys depend on those of other users, we explicitly allow them to be the
same by modeling L as a multiset.) We have the obvious correctness requirement, namely that if a
group of signers begin their interaction with public keys L = {pk1, . . . , pkn} and message m, and all
signers follow the protocol (meaning, perform their computations according to Sign) then all have
local output σ such that Vf returns 1 on input L, σ.

In describing protocols we will not specify the signing algorithm directly but instead describe
protocols informally by saying what parties receive, compute and send in each round.

Security. The notion of security requires that it be infeasible to forge multi-signatures involving

14

at least one honest signer. As in previous works [MOR01, BGLS03, LOS+06] we can in fact assume
there is a single honest signer. Our adversary will be viewed as having effectively corrupted all other
signers. It can choose their public keys as it likes, even as a function of the public key of the honest
signer, and can interact arbitrarily with the honest signer in any number of concurrent instances
before outputting its forgery attempt. In somewhat more detail, we consider the following three-
phase game associated to multi-signature scheme MS = (Pg,Kg,Sign,Vf) and adversary (forger) F:

Setup: The game chooses the system-wide parameters par
$← Pg and a key-pair (pk∗, sk∗)

$← Kg(par)
for the for the “target” (honest) signer. The target public key pk∗ is given as input to the forger F.

Attack: F can start a protocol instance with the honest signer by providing the latter with a message
m and a multiset L = {pk1, . . . , pkn} of purported cosigners, where pk∗ occurs in L at least once.
It can choose these public keys as it wishes, including as a function of pk∗ and previous protocol
flows. In interacting with the honest signer, F will play the role of all signers in L other than one
instance of pk∗, sending messages to, and receiving messages from, the honest signer. The forger
can schedule an arbitrary number of protocol instances concurrently, interacting with “clones” of
the honest signer, where each clone maintains its own state and uses its own coins but all use the
keys pk∗, sk∗ and follow the protocol (meaning use algorithm Sign) to compute their responses to
received messages. When the honest signer terminates then its local output (whether ⊥ or a compact
signature) is returned to F.

Forgery: At the end of its execution, F outputs a multiset L = {pk1, . . . , pkn}, a message m and
a forged signature σ. The forger is said to win the game if Vf(L,m, σ) = 1, pk∗ ∈ L and F never
initiated a signing protocol with L,m.

The advantage of F in breaking MS, denoted as Advuf-cma
MS (F), is defined as the probability that F

wins the above game, where the probability is taken over the coin tosses of the forger, the honest
signer, and the setup phase. We say that a forger F (t, qS, nmax, ε)-breaks MS if F runs in time at most
t, F initiates at most qS signing protocols with the honest signer, the number of public keys in the
multiset L involved in any signing query or in the forgery is at most nmax, and Advuf-cma

MS (F) ≥ ε. The
scheme MS is said to be (t, qS, nmax, ε)-secure if no forger (t, qS, nmax, ε)-breaks it. In the random
oracle model, the Sign and Vf algorithms, as well as the adversary, additionally have access to a
random oracle H : {0, 1}∗ → D, where D is a set possibly depending on the system parameters. The
additional parameter qH denotes the maximum number of F’s random oracle queries. (If there is more
than one random oracle, we mean the total number of queries to all random oracles.) We say that
F (t, qS, qH, nmax, ε)-breaks MS in the random oracle model, and that MS is (t, qS, qH, nmax, ε)-secure
in the random oracle model.

Discussion. Note that the game described above does not require the adversary to fix the public keys
of all signers in the system at the beginning of the game (as is required by the notions of [MOR01,
Bol03]), or to submit the secret keys of all corrupt signers to a special certification oracle (as is
required by the notions of [Bol03, LOS+06]). Rather, our model allows the adversary to dynamically
add new signers to the system, using arbitrary public keys that may depend on the target public key
or on previous signing interactions. It thereby avoids the KOSK assumption and does not presume
expensive proof of knowledge protocols to be performed with the CA. This security notion reflects a
real-world system with the desirable features that new signers can join on-the-fly using self-generated
keys, and that existing (external) CA infrastructure can be reused for the certification of these keys.

6 A Multi-Signature Scheme based on Discrete Logarithms

Intuition. Our first construction is based on the Schnorr signature scheme. A first idea to ag-

15

gregate signatures may be to let a signature under keys L = {X1, . . . , Xn} of message m be a
pair (R, s) such that gs = R

∏n
i=1X

c
i , where c = H(R‖〈L〉‖m) is determined by a random oracle.

Without restrictions on key generation however, this type of scheme is vulnerable to a well-known

attack [HMP95, Lan96, MH96, MOR01] where a corrupt signer chooses x1
$← Zp and sets its public

key X1 ← gx1 ·
∏n
i=2X

−1
i . This way, x1 essentially becomes the “secret key” for the entire group of

signers L = {X1, . . . , Xn}: signer 1 can by himself sign any message m in name of the entire group L

by choosing r
$← Zp and computing (R = gr , s = cx1 + r mod p) where c = H(R‖〈L〉‖m).

We counteract this attack by using a different value ci in the exponent of each public key Xi, so
that the verification equation becomes gs = R

∏n
i=1X

ci
i , where the values for ci are determined by

independent random oracle queries ci = H(Xi‖R‖〈L〉‖m). With the help of our generalized Forking
Lemma (see Lemma 3.1), we succeed in extracting from any forger the discrete logarithm of the
target public key. The way we apply the Forking Lemma is particularly interesting because we need
certain random oracle responses to be the same in both executions of the adversary, even though the
corresponding queries may not occur until after the fork.

A second problem is that, in order to respond to the forger’s signature queries, the simulator
needs to know the value of R before the forger does, so that it can program the random oracle. The
value of R is typically computed as the product of individual shares of R chosen by each signer.
Unless the target signer is the last to reveal his share (which we cannot assume to always be the
case), the forger knows R before the simulator does, enabling the forger to perform a random oracle
query involving R and thereby to prevent the simulator from programming this entry later on. We
overcome this problem by letting signers first “commit” to their share of R through an additional
random oracle query. The simulator, who sees all random oracle queries, can therefore look up the
individual shares of R before the forger can, and can thus correctly program the random oracle.

The scheme. Let k = blog2 pc, let l0, l1 ∈ N, and let H0 : {0, 1}∗ → {0, 1}l0 and H1 : {0, 1}∗ →
{0, 1}l1 be random oracles. To these, we associate the multi-signature scheme MS-DL = (Pg,Kg, Sign,
Vf) as follows:

Parameter generation. A trusted center chooses a random generator g
$← G∗ and publishes

(G, p, g) as system-wide parameters.

Key generation. Each signer runs the Kg algorithm to generate a random secret key x
$← Zp and

the corresponding public key X ← gx.

Signing. Let X1 and x1 be the public and private key of a signer, let m be the message to be signed,
and let X2, . . . , Xn be the public keys of all other cosigners. We recall that the indices 1, . . . , n
are merely local references to cosigners, defined by one signer within one protocol instance. These
indices are not tied to public keys in a global way, and in particular are not unique identities of
signers. The communication proceeds in a number of rounds, where in each round each signer
receives a message from every other signer, performs some local computation, and sends a message
to every other signer.
Round 1:

– Local input: x1, L = {X1, . . . , Xn}, m
– Computation: Choose r1

$← Zp, compute R1 ← gr1 and query t1 ← H0(R1).

– Send to signer i: t1

Round 2:

– Receive from signer i: ti

– Send to signer i: R1

Round 3:

16

– Receive from signer i: Ri

– Computation: For all 2 ≤ i ≤ n, check that ti = H0(Ri). Abort the protocol with
local output ⊥ if this is not the case; otherwise, compute R ←

∏n
i=1Ri, query c1 ←

H1(X1‖R‖〈L〉‖m) where 〈L〉 is a unique encoding of L (e.g. the sequence of keys in lexico-
graphic order), and compute s1 ← x1c1 + r1 mod p.

– Send to signer i: s1

Round 4:

– Receive from signer i: si

– Computation: s←
∑n

i=1 si mod p

– Local output: the signature σ = (R, s)

Verification. Given a multiset of public keys L = {X1, . . . , Xn}, message m and signature σ =
(R, s), the verifier computes ci ← H1(Xi‖R‖〈L〉‖m) for all 1 ≤ i ≤ n. He accepts the signature if
gs = R

∏n
i=1X

ci
i , and rejects otherwise.

Efficiency. An overview comparing the efficiency of our scheme to that of other (provably secure)
multi-signature schemes is given in Table 1. Of course, one could argue whether a fair comparison
between schemes achieving different security notions (KOSK assumption or not, random oracle or
not) and relying on different computational assumptions (CDH versus DL, pairings or not) is possible
at all. With that caveat in mind, we stress that the stronger security achieved by the MS-DL scheme
does not come at the cost of efficiency. Compared to the MS-MOR scheme [MOR01], it avoids the
expensive and impractical interactive key generation protocol, while offering considerably shorter
public keys and maintaining the same signature length and signing/verification costs. Moreover,
our scheme allows for concurrent signing sessions at the cost of one extra round of interaction (and
the computation of some hash values). Compared to the MS-Bo scheme [Bol03], our scheme has
about twice the signature size, yet offers faster verification. The MS-DL beats the MS-LOSSW
scheme [LOS+06] in all costs, especially in the common parameter size that is particularly large for
MS-LOSSW. Moreover, our scheme has the advantage over MS-Bo and MS-LOSSW of not relying on
pairings to be defined over the underlying group.

We state the security of the MS-DL scheme that we presented above in the plain public-key model
(i.e., without the KOSK assumption) in the theorem below. The proof makes use of the simplified
Forking Lemma (Lemma 3.1) that we presented in Section 3.

Theorem 6.1 If there exists a (t, qS, qH, nmax, ε)-forger F in the random oracle model against the
multi-signature scheme MS-DL described above, then there exists an algorithm B that (t′, ε′)-breaks
the discrete logarithm problem in G, where

ε′ ≥ ε2

qH + qS
− 2qH + 16n2maxqS

2l0
− 8nmaxqS

2k
− 1

2l1
, (4)

t′ = 2t+ qStexp +O((qS + qH)(1 + qH + nmaxqS))

and texp is the time of an exponentiation in G.

Proof: The idea of the proof is to use our Forking Lemma to obtain from the forger F two forgeries
(R, s) and (R′, s′) satisfying

gs = R
n∏
i=1

Xci
i and gs

′
= R

n∏
i=1

Xi
c′i ,

such that ci = c′i if Xi is the target public key X∗, and ci 6= c′i for all other keys. We can then
extract the discrete logarithm of X∗ by dividing the two equations above. Special care must be

17

taken however in responding F’s random oracle queries so that the above relations between ci and c′i
are ensured. In particular, F may not ask the queries defining ci and c′i until after the fork, where
the two executions of F have already diverged. We overcome this by fixing the response values to
these queries before the fork, and by recognizing the queries when they actually occur after the fork.
It is mainly due to the modularity of our simplified Forking Lemma that the complexity of the proof
is kept manageable.

We are now ready to present the actual proof. Given a (t, qS, qH, nmax, ε)-forger F, consider the
following algorithm A. On inputs g ∈ G∗, X∗ ∈ G and h1, . . . , hqH+qS ∈ {0, 1}l1 , algorithm A
runs the forger F on input system parameters par = (G, p, g) and target public key pk∗ = X∗.
Algorithm A initializes counters ctr1, ctr2 to zero, and maintains initially empty associative arrays
T0[·],T1[·, ·],T2[·]. It assigns T2[X

∗] ← 0 and answers F’s oracle queries as follows. Tables T0 and
T1 are used to simulate random oracles H0 and H1, respectively, while T2 assigns a unique index
1 ≤ i ≤ qH + nmaxqS to each public key X occurring either as a cosigner’s public key in one of F’s
signature queries, or as the first item in the argument of one of F’s queries to H1. Algorithm A
assigns index 0 to the target public key X∗ by setting T2[X

∗]← 0. It responds to F’s oracle queries
as follows:

• H0(R): If T0[R] is undefined, then A chooses T0[R]
$← {0, 1}l0 . It returns T0[R] to F.

• H1(X‖Q): If T2[X] is undefined then A increases ctr2 and sets T2[X]← ctr2. Let i = T2[X].
If T1[i, Q] has not yet been defined, then A immediately assigns random values to all entries
T1[j,Q] for 1 ≤ j ≤ qH +nmaxqS, increases ctr1 and assigns T0[0, Q]← hctr1 . (If the argument
of the query cannot be parsed as X‖Q, then A simply returns a random element of {0, 1}l1 ,
preserving consistency if the same query is asked again.)

• Signing query with public keys L and message m: If X∗ 6∈ L then algorithm A returns ⊥ to
F; otherwise, it parses the elements of L as {X1 = X∗, X2, . . . , Xn} and continues as follows.
First, it checks for all 2 ≤ i ≤ n whether T2[Xi] has already been defined; it increases ctr2
and sets T2[Xi] ← ctr2 if not. Then, A increases counter ctr1 and sets c1 ← hctr1 . It chooses

s1
$← Zp, computes R1 ← gs1X−c11 and sends t1 = H0(R1) to all cosigners.

After receiving t2, . . . , tn from F (who’s playing the role of the cosigners), A searches in table
T0 for the values Ri so that ti = T0[Ri]. If no such Ri can be found for some 2 ≤ i ≤ n, then
A sets a flag alert ← true and sends R1 to all cosigners. If more than one such value is found
for some Ri, then it sets bad1 ← true, aborts the execution of F and halts with output (0, ε).
Otherwise, A computes R ←

∏n
i=1Ri and checks whether T1[0, Q] has already been defined

for Q = R‖〈L〉‖m. If so, it sets bad2 ← true, aborts the execution of F and halts with output

(0, ε). If not, it sets T1[0, Q]← c1, chooses T1[i, Q]
$← {0, 1}l1 for all 1 ≤ i ≤ qH + nmaxqS, and

sends R1 to all cosigners.

If, after receiving R2, . . . , Rn, there exists an index 1 ≤ i ≤ n such that H0(Ri) 6= ti, then A
stops the signing protocol returning ⊥. If alert = true while H0(Ri) = ti for all 1 ≤ i ≤ n,
then it sets bad3 ← true, aborts the execution of F and halts outputting (0, ε). Otherwise, it
sends s1 to all cosigners.

After receiving s2, . . . , sn, A computes s←
∑n

i=1 si mod p and returns (R, s) as the signature.

Eventually, F outputs a forged signature (R, s) together with multiset L = {X1, . . . , Xn} and message
m. Algorithm A first performs additional random oracle queries H1(Xi‖R‖〈L〉‖m) for 1 ≤ i ≤
n, thereby making sure that T2[Xi] is defined. Let 1 ≤ J ≤ qH + qS be the index such that

18

T1[0, R‖〈L〉‖m] = hJ , and let n∗ be the number of times that X∗ occurs in L. If F’s forgery is valid,
algorithm A halts returning (J, (R, hJ , s, n

∗)); if not, it halts returning (0, ε).

Consider set H = {0, 1}l1 and input generator IG that returns random elements g,X∗
$← G. We

bound the accepting probability acc of A with respect to these, as defined in Lemma 3.1, as follows:

acc ≥ ε− Pr [bad1 = true]−
qS∑
i=1

(
Pr [bad2 = true during i-th Sign query]

+ Pr [bad3 = true during i-th Sign query]

)

≥ ε− (qH + nmaxqS + 1)2

2l0+1
−

qS∑
i=1

(
qH + nmaxqS

2k
+
qH + qS

2k
+
nmax

2l0

)

≥ ε− (qH + nmaxqS + 1)2

2l0
− 2qS(qH + nmaxqS)

2k
.

We clarify how the bounds in the second inequality were obtained. If at some point in the execution
of F two values Ri 6= R′i are found such that ti = H0(Ri) = H0(R

′
i), then clearly at least one collision

must have occurred in H0. However, all response values of H0 are chosen uniformly at random from
{0, 1}l0 , and since there are at most qH + nmaxqS queries to H0, the probability that at least one
collision occurs is at most ((qH + nmaxqS)(qH + nmaxqS + 1)/2)/2l0 ≤ (qH + nmaxqS + 1)2/2l0 .

To cause bad2 = true in the i-th signing query, we distinguish between the case that H0(R1) was
previously queried by the forger, and the case that it wasn’t. In the first case, F probably knows
R and may have deliberately queried H1(X‖R‖〈L〉‖m) for some X. But since R1 was chosen by
A independently from F’s view at the beginning of the signing protocol, the probability that F
queried H0(R1) is at most (qH + nmaxqS)/p ≤ (qH + nmaxqS)/2k. In the second case, F’s view is
completely independent of R1, and hence of R. The probability that R occurred by chance in a
previous query to H1 or was set by A in one of the i − 1 previous signature simulations is at most
(qH + qS)/p ≤ (qH + qS)/2k.

Lastly, in order to set bad3 = true, F must have predicted the value of H0(Ri) for at least one
1 ≤ i ≤ n, which it can do with probability at most nmax/2

l0 . The third inequality follows from
simple rearranging of terms after assuming (without loss of generality) that qH, qS, nmax > 0.

Now consider an algorithm B that on input X∗ runs the forking algorithm FA(X∗), which with
probability frk returns (1, (R, h, s, n∗), (R′, h′, s′, n′∗)) with h 6= h′. These forgeries are such that

gs = R
n∏
i=1

Xci
i and gs

′
= R′

n′∏
i=1

X ′i
c′i

where L = {X1, . . . , Xn} and m are the public keys and the message involved in F’s first forgery,
and ci = H1(Xi‖R‖〈L〉‖m) are the relevant random oracle responses from the first run. Let I∗ ⊆
{1, . . . , n} be the set of indices such that Xi = X∗. Variables L′, X ′1, . . . , X

′
n′ ,m

′, c′1, . . . , c
′
n′ , I

′∗ are
defined analogously for the second run of F. We will show later that, due to the way that A simulates
F’s environment, it must hold that n = n′, that L = L′, that I∗ = I ′∗, that n∗ = n′∗, that ci = c′i for
i 6∈ I∗, and that ci = h and c′i = h′ for i ∈ I∗. Dividing the two equations above then gives

gs−s
′

=
∏
i∈I∗

(X∗)
h−h′

= (X∗)n
∗(h−h′) ,

so that B can compute the discrete logarithm of X∗ as (s− s′)/(n∗(h− h′)) mod p. The probability

19

that algorithm B succeeds in doing so is given by

ε′ ≥ frk

≥ acc2

qH + qS
− 1

2l1

≥ ε2

qH + qS
− 2(qH + nmaxqS + 1)2

(qH + qS) · 2l0
− 4qS(qH + nmaxqS)

(qH + qS) · 2k
− 1

2l1

≥ ε2

qH + qS
− 2qH + 16n2maxqS

2l0
− 8nmaxqS

2k
− 1

2l1
,

where again we assume without loss of generality that qH, qS, nmax > 0. The theorem follows.

We still have to argue why the equalities between all the variables in both runs of A hold. In the
case that F returned (1, (R, h, s, n∗), (R, h′, s′, n′∗)), let J be the index that A returned after both
executions by FA. In A’s first execution, hJ = h is assigned to T1[0, R‖〈L〉‖m] = H1(X

∗‖R‖〈L〉‖m) at
the moment when F makes its first query H1(X‖R‖〈L〉‖m) for some public key X (so not necessarily
X∗), where L = {X1, . . . , Xn}. Likewise, in the second run, h′J = h′ is assigned to T1[0, R

′‖〈L′〉‖m′]
when F queries H1(X

′‖R′‖〈L′〉‖m′) for some public key X ′, where L′ = {X ′1, . . . , X ′}. Up to the
point of this hash query, however, the environments of F provided by A in the first and the second
run are identical, because A uses the same inputs, random tape and values h1, . . . , hJ−1 to generate
F’s inputs, random tape and oracle responses. Therefore, the two executions of F are identical up to
this point, and in particular the arguments of both hash queries must be the same, implying that
R = R′, L = L′, n = n′, Xi = X ′i and mi = m′i for 1 ≤ i ≤ n. Moreover, the entries for X1, . . . , Xn

in T2 are assigned at the latest when parsing the arguments of this hash query, causing the values
of T2[Xi] to be the same in both runs as well. The forger’s other queries H1(Xi‖R‖〈L〉‖m) may
not occur until much later, but the response values T1[T2[Xi], R‖〈L〉‖m] for these queries are chosen
before the fork, and hence are the same in both runs as well. Therefore, it holds that ci = c′i for all
1 ≤ i ≤ n, that ci = hJ = h for i ∈ I, and that c′i = h′J = h′ for i ∈ I, which concludes the proof.

The running time t′ of B is twice that of A plus the time needed to compute the discrete logarithm
(s−s′)/(n∗(h−h′)) mod p. The running time of A is the running time t of F plus the time needed to
answer qH+nmaxqS random oracle queries and qS signature queries. We assume that exponentiations
in G take time texp, and all other operations take unit time. Each random oracle query may cause
A to perform O(1 + qH + nmaxqS) unit-time operations. Each signature query involves one multi-
exponentiation in G and O(1 + qH + nmaxqS) unit-time operations. Therefore, we have t′ = 2t +
qStexp +O((qS + qH)(1 + qH + nmaxqS)).

Reduction tightness. The reduction of the MS-DL scheme presented above is tighter than that of
the MS-MOR scheme [MOR01], but is still not tight, as can be seen from Equation (4). In comparison,
the security proof of the MS-MOR scheme requires two applications of the forking technique (once to
extract the secret keys of corrupt players, and once to obtain two forgeries) and qH ·qS rewindings (to
simulate signing protocols) of the forger, yielding a considerable loss in the tightness of the security
reduction. The pairing-based MS-Bo and MS-LOSSW schemes do not have tight security reductions
either.

7 A Scheme with Tight Reduction to DDH

The security reduction of the MS-DL scheme presented in the previous section is tighter than that
of the MS-MOR scheme [MOR01], but is still not tight, as can be seen from Equation (4). In

20

the following, we present a scheme with a tight security reduction to the decisional Diffie-Hellman
problem. The scheme is based on the Katz-Wang standard signature scheme [KW03], which on its
turn was based on a previously proposed scheme [CV90, GJ03].

The DDH assumption. Let G be a multiplicative group of prime order p, and let G∗ = G \ {1}.
The advantage of an algorithm A in solving the decisional Diffie-Hellman (DDH) problem in G is
defined as

Advddh
G (A) =

∣∣∣ Pr
[
A(g, h, gx, hx) = 1 : g, h

$← G∗ ; x
$← Zp

]
− Pr

[
A(g, h, gx, hy) = 1 : g, h

$← G∗ ; x, y
$← Zp

] ∣∣∣
We say that A (t, ε)-solves the DDH problem in G if it runs in time at most t and has advantage
Advddh

G (A) ≥ ε, and we say that the DDH problem in G is (t, ε)-hard if no algorithm A (t, ε)-solves
it.

The scheme. Let k = blog2 pc and let l0 ∈ N. Let H0 : {0, 1}∗ → {0, 1}l0 and H1 : {0, 1}∗ → Zp be
random oracles, where the range of H1 depends on the common parameters. To these, we associate
the following multisignature scheme MS-DDH:

Parameter generation. The trusted parameter generator chooses random elements g, h
$← G∗

and publishes (G, p, g, h) as the system-wide parameters.

Key generation. On input parameters (G, p, g, h), each signer runs the Kg algorithm to generate a

secret key x
$← Zp and computes the corresponding public key consisting of X ← gx and Y ← hx.

Signing. On input secret key x1, corresponding public key (X1 = gx1 , Y1 = hx1), message m and
the cosigner’s public keys (X2, Y2), . . . , (Xn, Yn), a signer proceeds as follows.
Round 1:

– Local input: x1, L = {(X1, Y1), . . . , (Xn, Yn)}, m
– Computation: Choose r1

$← Zp, compute A1 ← gr1 and B1 ← hr1 , and query t1 ←
H0(A1‖B1).

– Send to signer i: t1

Round 2:

– Receive from signer i: ti

– Send to signer i: A1, B1

Round 3:

– Receive from signer i: Ai, Bi

– Computation: Check that ti = H0(Ai‖Bi) for all 2 ≤ i ≤ n. Abort the protocol with
local output ⊥ if this is not the case. Otherwise, compute A ←

∏n
i=1Ai, B ←

∏n
i=1Bi,

c1 ← H1(X1‖Y1‖A‖B‖〈L〉‖m), and s1 ← x1c1 + r1 mod p.

– Send to signer i: s1

Round 4:

– Receive from signer i: si

– Computation: s←
∑n

i=1 si mod p

– Local output: the signature σ = (A,B, s)

Verification. On input a multiset of public keys L = {(X1, Y1), . . . , (Xn, Yn)}, message m and
candidate signature σ = (A,B, s), the verifier computes ci ← H1(Xi‖Yi‖A‖B‖〈L〉‖m) for all
1 ≤ i ≤ n. He accepts the signature if and only if gs = A

∏n
i=1X

ci
i and hs = B

∏n
i=1 Y

ci
i .

21

Theorem 7.1 If the DDH problem in G is (t′, ε′)-hard, then the MS-DDH scheme is (t, qS, qH, nmax, ε)-
secure whenever t′ ≥ t+ (qS + 2)texp +O(qH + (nmax + 1)qS + 1) and

ε′ ≤ ε− (qH + nmaxqS + 1)2

2l0
− 2qS(qH + nmaxqS + 2)

2k
.

Proof: Given forger F, consider the following algorithm A solving the DDH problem. On inputs
(h,X∗, Y ∗), A has to decide whether loggX

∗ = logh Y
∗. Algorithm A maintains initially empty

associative arrays T0[·],T1[·], and runs F on inputs par = (G, p, g, h) and pk∗ = (X∗, Y ∗), answering
F’s oracle queries as follows:

• H0(·) and H1(·): Algorithm A returns random strings chosen from {0, 1}l0 and Zp, respectively,
maintaining consistency of responses for repeating queries as usual using associative arrays T0[·]
and T1[·].

• Signing query with public keys L and message m: If (X∗, Y ∗) 6∈ L, then A returns ⊥ to F,

else let L = {(X1, Y1) = (X∗, Y ∗), (X2, Y2), . . . , (Xn, Yn)}. Algorithm A chooses c1, s1
$← Zp,

computes A1 ← gs1X−c11 , B1 ← hs1Y −c11 , t1 ← H0(A1‖B1), and sends t1 to all cosigners.

After having received t2, . . . , tn from F, A looks up Ai, Bi such that T0[Ai‖Bi] = ti. If for
some 2 ≤ i ≤ n no such values Ai, Bi exist, A sets a flag alert ← true, and sends A1, B1

to all cosigners. If multiple possibilities Ai, Bi are found for some i, then A aborts the ex-
ecution of F and outputs 0. Otherwise, A computes A ←

∏n
i=1Ai, B ←

∏n
i=1Bi and sets

T1[X
∗‖Y ∗‖A‖B‖〈L〉‖m] ← c1, or it aborts outputting 0 if this entry in T1 was already de-

fined. A sends A1, B1 to all other cosigners.

After having received Ai, Bi for all 2 ≤ i ≤ n, A checks that ti = H0(Ai‖Bi) for 1 ≤ i ≤ n. If
one of these tests fails, A halts this signing protocol returning ⊥ to F. If alert = true yet all
tests succeeded, then A aborts the execution of F and outputs 0. Otherwise, it sends s1 to all
cosigners.

After having received si for all 2 ≤ i ≤ n, A computes s←
∑n

i=1 si mod p, and returns (A,B, s)
to F as the signature.

When F outputs its forged signature (A,B, s) for public keys L and message m, A performs one addi-
tional hash query H1(X

∗‖Y ∗‖A‖B‖〈L〉‖m). If the forgery is valid, meaning that Vf(L,m, (A,B, s)) =
1, (X∗, Y ∗) ∈ L and F never queried (L,m) to the signing oracle, then algorithm A outputs 1, oth-
erwise it outputs 0.

If (h,X∗, Y ∗) is a Diffie-Hellman tuple, then the environment provided to F by A is a perfect simu-
lation of a real attack environment, unless A aborts the execution of F prematurely. We analyze the
probability that A aborts. If A halts during some signing query due to multiple values Ai, Bi being
found such that T0[Ai‖Bi] = ti, then there must be at least two different entries in T0 that were
assigned the same value. Since all qH + nmaxqS values in T0[·] are chosen uniformly at random from
{0, 1}l0 , this happens with probability at most ((qH + nmaxqS + 1)2)/2l0 .

We analyze the probability that A aborts during the i-th signing query due to an entry of T1 already
being defined when it wants to program T1[X

∗‖Y ∗‖A‖B‖〈L〉‖m] ← c1. We distinguish between
the case that F previously queried H0(A1‖B1), and the case that it did not. In the first case, we
must assume that A knows A,B, but since A1 was chosen at random and independent of F’s view
at the beginning of the protocol, the probability that F submitted this query to H0 is at most
((qH + nmaxqS + 1)2/2)/2k. In the second case, F’s view is completely independent of A,B, and the

22

probability that A‖B appeared as part of a previous query to H1 is at most (qH + qS)/2k. Finally,
in order to make A abort because alert is set while H0(Ai‖Bi) = ti for all 1 ≤ i ≤ n, F must have
predicted at least one response of H0, which it can do with probability at most nmax/2

l0 . Therefore,
we have that

Pr
[
A(h, gx, hx) = 1 : h

$← G ; x
$← Zp

]
≥ ε− (qH + nmaxqS + 1)2

2l0+1
−

qS∑
i=1

(
qH + nmaxqS + 1

2k
+
qH + qS

2k
+
nmax

2l0

)

≥ ε− (qH + nmaxqS + 1)2

2l0
− 2qS(qH + nmaxqS + 1)

2k
,

where in the last inequality we assume without loss of generality that nmax > 0. If (h,X∗ = gx, Y ∗ =
gy) is a random tuple, then x 6= y with probability 1−1/p ≥ 1−1/2k. In the case that x 6= y, we show
that it is information-theoretically impossible for F to output a valid forgery. Let (A = ga, B = gb, s)
be a valid forgery for public keys L = {(X1 = gx1 , Y1 = gy1), . . . , (Xn = gxn , Yn = hyn)} and message
m. Then we have

s = a+
n∑
i=1

cixi = b+
n∑
i=1

ciyi mod p

where ci = H1(Xi‖Yi‖A‖B‖〈L〉‖m) for 1 ≤ i ≤ n. Consider the partition {I1, . . . , In′} of the indices
{1..n} so that two indices i1, i2 belong to the same component Ij if (Xi1 , Yi1) = (Xi2 , Yi2). Moreover,
define (Xj , Y j , xj , yj , cj) to be (Xi, Yi, xi, yi, ci) for any i ∈ Ij . (Note that Xi, Yi, xi, yi, ci are the
same for all indices i belonging to the same component Ij .) Let I1 be the component of the target
public key, i.e. (X1, Y 1) = (X∗, Y ∗). Then the equation above can be rewritten as the following
linear equation in unknowns cj , j = 1..n′:

|I1| · (x1 − y1) · c1 +

n′∑
j=2

|Ij | · (xj − yj) · cj + (a− b) = 0 mod p . (5)

The argument of F’s random oracle query defining cj contains A, B, Xj and Y j for j = 1..n′, so
the forger is forced to fix values for a, b, xj and yj for all j = 1..n′ before seeing the value of cj
for any 1 ≤ j ≤ n′. Hence, the game can be seen as if the forger first chooses xj , yj for j = 2..n′

in Equation (5), and then the random oracle chooses a random vector (cj)1≤j≤n′
$← Znp . We want

to bound the probability that the vector chosen by the random oracle is a solution of Equation (5).
From our hypothesis that x 6= y and |I1| > 0 follows that the coefficient of c1 is certainly non-zero,
so the equation has pn

′−1 solutions in Zn′p . The probability that a randomly chosen vector (cj)1≤j≤n

is a solution is at most pn
′−1/pn

′ ≤ 1/2k. Therefore, we have that

Pr
[
A(h, gx, hy) = 1 : h

$← G ; x, y
$← Zp

]
≤ 1

2k
+

1

2k
=

2

2k
,

so that the success probability of A in solving the DDH problem in G is at least

ε′ ≥ ε− (qH + nmaxqS + 1)2

2l0
− 2qS(qH + nmaxqS + 2)

2k
,

assuming without loss of generality that qS > 0. The running time t′ of A is the running time of
F plus the time needed to verify the forgery and to answer qH + nmaxqS random oracle queries and

23

qS signature queries. We assume that (multi-)exponentiations in G take time texp and all other
operations take unit time. Then each random oracle takes O(1) unit-time operations, each signature
query takes two exponentiations and O(nmax + 1) unit-time operations, and the verification takes
two multi-exponentiations. Hence we have that t′ = t+ (qS + 2)texp +O(qH +nmaxqS + qS + 1).

8 An Identity-Based Scheme from RSA

The primary purpose of multi-signatures is to save on communication costs. To verify the signatures,
however, one still needs the public keys of all cosigners, each of which may come with an associated
certificate. Transmitting, storing and verifying these n public keys and certificates partly defeats
the cost-saving purpose of multi-signatures. One cannot always avoid the need to include some
information identifying the cosigners, but usually this can be done more compactly than through
their public keys, e.g. through their user names or IP addresses.

In an identity-based signature scheme [Sha85], the public key of a user is simply his identity,
eliminating the need for explicit certification and all associated costs. Moreover, an identity may
very well be shorter than a randomly generated public key, further saving on communication and
storage costs. This makes the identity-based setting particularly appealing for use in conjunction
with multi-signatures, yielding the concept of identity-based multi-signature (IBMS) schemes.

Existing implementations. Even though IBMS schemes are compelling with regard to applica-
tions, their implementations are limited. As shown in [DKXY03, BNN04], any standard signature
scheme can be transformed into an identity-based one using the “certification paradigm”. One can
attempt to derive IBMS schemes from existing standard MS schemes via this approach. The problem
is that the resulting multi-signature is not compact due to the need to include the certificates with
each signature. Even if the signatures in the certificates can be aggregated [BGLS03], the public
keys they contain cannot. In summary, unlike the case of standard signatures, there seems no trivial,
general way to transform compact signature schemes into identity-based ones.

The first fully secure IBMS scheme was recently proposed by Gentry and Ramzan [GR06]. The
scheme by Cheng et al. [CLW05] was only proved secure under a weak variant of selective-ID security.
Both schemes employ groups with bilinear maps (also known as pairings). It is common practice in
cryptography to try to find alternative constructions of a primitive based on different assumptions.
While pairings turned out to be extremely useful in the design of cryptographic protocols, they were
only recently brought to the attention of cryptographers [Jou00], and hence did not yet enjoy the
same exposure to cryptanalytic attacks by experts as other, older problems from number theory
like discrete logarithms, factoring and RSA. Moreover, companies may have invested in expensive
hardware or software implementations of RSA, and may be reluctant to dump these in favor of new
implementations of pairings.

Contributions of our IBMS scheme. In this section, we present an efficient and provably
secure IBMS scheme based on RSA, which is thereby the first IBMS scheme not relying on the use
of pairings. Our scheme is essentially a multi-signature variant of the Guilliou-Quisquater [GQ90]
identity-based signature scheme. For 1024-bit RSA moduli, signatures are typically 1184 bits long.
This is longer than the 320-bit signatures of the scheme of [GR06], but verification is considerably
cheaper: our scheme needs only a single (multi-)exponentiation in an RSA group, as opposed to three
pairing computations for the scheme of [GR06]. The cost of one pairing computation is roughly that
of 6–20 exponentiations.

Syntax and security. We extend the syntax and security notion of interactive multi-signature
schemes to the identity-based setting as follows. A trusted key distribution center runs a Setup

24

algorithm to generate a master public key mpk and corresponding master secret key msk . To a

signer with identity ID ∈ {0, 1}∗, it provides a secret key derived via sk ID
$← KeyDer(msk , ID).

The signer can use this secret key to participate in signing protocols as prescribed by the Sign
algorithm, which takes as additional input a multiset L = {ID1, . . . , IDn} containing the identities
of all cosigners and the message m. Verification is done by running the Vf algorithm on input mpk ,
a multiset of identities L, a message m and a candidate signature σ. Correctness requires that for
all n ∈ N, for all (mpk ,msk) output by Setup, for all ID1, . . . , IDn ∈ {0, 1}∗ and for all messages
m ∈ {0, 1}∗, each signer i outputs a signature σi such that Vf(mpk , L,m, σi) = 1 with probability

one whenever all signers follow the signing protocol using secret key sk i
$← KeyDer(msk , ID i).

Our security notion is more involved than that of [GR06] because we need to model interactive
signing protocols. (The scheme of [GR06] is non-interactive.) As for standard multi-signatures,
security requires that it be infeasible to forge a multi-signature involving at least one honest signer.
We consider a very strong security notion where the adversary can adaptively decide to corrupt honest
signers, resulting in it being given their secret keys, and can engage in any number of arbitrarily
interleaved signing protocols. In each protocol instance, the adversary can choose to interact with
any number of honest signers, while itself plays the role of all other signers involved in the protocol.
It can do so with or without knowing their secret keys (i.e., the adversary need not have corrupted
a signer prior to playing its role in a protocol) and can deviate from the rules prescribed by the Sign
algorithm.

We stress that the capability to interact with multiple honest signers in a single protocol instance
is important in the identity-based setting. In the public-key setting, we could assume without loss
of generality that all signers are corrupted except for one “target” signer. This does not hold in
the identity-based setting however. The adversary may want to let its choice which identities to
corrupt and under which identity to forge depend on previous signature transcripts. Requiring the
adversary to corrupt all but one of the participants before engaging in a signing protocol precludes
such attacks. (The adversary can always try to play the role of a signer without knowing its secret
key, but this protocol will not result in a valid signature unless the scheme is forgeable.)

More precisely, the forger is given the master public key mpk as input at the beginning of the
game, and has access to a key derivation oracle KeyDer(msk , ·) which it can query up to qK times.
It can engage in up to qS arbitrarily interleaved signing protocols with honest signers by submitting
two multisets of identities Lh, Lc and a message m to the signing oracle. The multiset Lh contains
the honest signers, whose role will be played by the challenger according to the Sign algorithm. The
forger plays the role of the (possibly) cheating signers contained in Lc.

We again assume that the adversary controls all network traffic, even between honest signers. To
model this, each honest signer hands its outgoing messages to the adversary, who can then choose
to read or modify the message, and even whether to deliver it or not. Since we do not assume the
availability of a secure broadcast primitive, our security proof has to take into account that the
adversary can set different honest signers up with a different view of the protocol by tampering with
the messages sent to them.

Eventually, the forger outputs a signature σ, a multiset of identities L and a message m. The
forger wins the game if Vf(mpk , L,m, σ) = 1, if there exists an identity ID ∈ L such that F never
queried the key derivation oracle on ID , and if the F never performed a signature query (Lh, Lc,m

′)
so that L = Lh ∪ Lc and m = m′. The scheme is said to be (t, qK, qS, nmax, ε)-secure if no forger F
running in time at most t, performing at most qK key derivation and qS signature queries with up
to nmax signers, has probability greater than ε to win the above game. In the random oracle model,
the KeyDer, Sign and Vf algorithms, as well as the adversary, additionally have access to one or more
random oracles, which the adversary can query up to qH times.

25

The RSA assumption. An RSA key generator Kgrsa is an algorithm that generates triplets (N, e, d)
such that N is the product of two large primes and ed ≡ 1 mod ϕ(N). The advantage of A in breaking
the one-wayness of RSA related to Kgrsa is defined as

Advow-rsa
Kgrsa

(A) = Pr

[
xe ≡ y mod N ;

(N, e, d)
$← Kgrsa ; y

$← Z∗N ;

x
$← A(N, e, y)

]
.

We say that A (t, ε)-breaks the one-wayness of RSA with respect to Kgrsa if it runs in time at most
t and has advantage Advow-rsa

Kgrsa
(A) ≥ ε, and we say that the RSA function associated to Kgrsa is

(t, ε)-one-way if no algorithm A (t, ε)-breaks it.

The scheme. We now propose an identity-based multisignature scheme IBMS-GQ based on GQ
signatures [GQ90] that we prove secure under the one-wayness of RSA. Let l0, l1, lN ,∈ N, and let
H0 : {0, 1}∗ → {0, 1}l0 , H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → Z∗N be random oracles, where
H2 depends on the master public key of the scheme. Let Kgrsa be an RSA key pair generator
that outputs triplets (N, e, d) such that ϕ(N) > 2lN and with prime encryption exponents e of
length strictly greater than l1 + log2 nmax bits. To these, we associate the following identity-based
multisignature scheme IBMS-GQ.

Setup. The key distribution center runs Kgrsa to generate RSA parameters (N, e, d). It publishes
mpk = (N, e) as the master public key, and keeps the master secret key d secret.

Key derivation. On input master secret key d and signer identity ID , the key distribution center
computes x← H2(ID)d mod N , and sends the user secret key x over a secure and authenticated
channel to the signer with identity ID .

Signing. On input user secret key x1 for identity ID1, messagem and cosigner identities ID2, . . . , IDn,
a signer proceeds as follows.
Round 1:

– Local input: x1, L = {ID1, . . . , IDn}, m
– Computation: Choose r1

$← Z∗N , compute R1 ← re1 mod N and t1 ← H0(R1).

– Send to signer i: t1

Round 2:

– Receive from signer i: ti

– Send to signer i: R1

Round 3:

– Receive from signer i: Ri

– Computation: Check that ti = H0(Ri) for all 2 ≤ i ≤ n, and halt the protocol with
local output ⊥ if one of these tests fails. Otherwise, compute R ←

∏n
i=1Ri mod N , c ←

H1(R‖〈L〉‖m) and s1 ← r1x
c
1 mod N .

– Send to signer i: s1

Round 4:

– Receive from signer i: si

– Computation: s←
∏n
i=1 si mod N

– Local output: the signature σ = (c, s)

Verification. On input the master public key (N, e), a multiset of signer identities L = {ID1, . . . ,

IDn}, a messagem and a candidate signature (c, s), the verifier recomputesR← se
(∏n

i=1H2(ID i)
)−c

mod
N . He accepts the signature as valid if c = H1(R‖〈L〉‖m), and rejects otherwise.

26

The length of a multi-signature is l1 + lN bits, or about 160 + 1024 = 1184 bits for typical values
of the security parameter. Signing takes two exponentiations in Z∗N for each signer, and verification
takes a single (multi-)exponentiation, independent of the value of n. (Note that verification time is
not completely independent of n due to the computation of

∏n
i=1H2(ID i), but this is fast.)

The following theorem relates the unforgeability of our IBMS scheme to the one-wayness of the
RSA problem associated to Kgrsa. The proof is given below. We stress that we do not run into the
key generation issues of non-identity-based schemes because keys are generated by the trusted center
instead of by the signers themselves.

Theorem 8.1 If the RSA function associated to Kgrsa is (t′, ε′)-one-way, then the IBMS-GQ scheme
is (t, qK, qS, qH, nmax, ε)-secure whenever t′ ≥ 2t+ (2qH + 2qK + 2qS(nmax + 1) + 2nmax + 4) · texp and

ε′ ≤ ε2

16q2K(qH + 1)
−

2q2H + 8nmaxqSqH + 8n2maxq
2
S

2lN
− nmaxqS

2l0
− 1

2l1
, (6)

where texp is the time of an exponentiation in Z∗N .

Before proving the above theorem, we remark that our techniques can be applied to other identity-
based signature schemes than the GQ scheme as well. In particular, one can obtain efficient IBMS
schemes based on RSA from [Sha85], based on factoring from [FS87, FFS88, OO90, OS90], and
based on pairings from [Hes03, CC03, Yi03]. An extensive overview of the security properties of
these schemes as identity-based signature schemes can be found in [BNN04].

Proof: Given a forger F, consider the following algorithm A. On inputs (N, e, y), h1, . . . , hqH+1,
algorithm A runs F on inputs mpk = (N, e).

Algorithm A maintains a counter ctr1 with initial value 0 and initially empty associative arrays
T0[·],T1[·, ·],T2[·]. It runs F on input mpk = (N, e) and answers F’s oracle queries as follows.

• H0(R): If T0[R] is undefined, then A chooses T0[R]
$← {0, 1}l0 . It returns T0[R] to F.

• H1(Q): A returns T1[Q], increasing ctr1 and setting T1[Q] ← hctr1 if this entry is not yet
defined.

• H2(ID): We use Coron’s technique [Cor00] when simulating H2 to obtain a tighter security
bound. If T2[ID] = (b, x,X) then A returns X. If this entry is not yet defined, it chooses

x
$← Z∗N and tosses a biased coin b so that b = 0 with probability δ and b = 1 with probability

1 − δ. If b = 0, then A sets X ← xe mod N ; if b = 1, it sets X ← xey mod N . It stores
T2[ID]← (b, x,X) and returns X to F.

• Key derivation query for ID : Algorithm A looks up T2[ID] = (b, x,X), performing an additional
query H2(ID) if this entry is not yet defined. If b = 0, then A returns x; otherwise, it sets
bad0 ← true and aborts the execution of F returning (0, ε).

• Signature query for identity ID1, multiset of cosigners L = {ID1, . . . , IDn} and message m:
Algorithm A first performs a query H2(ID1) and looks up T2[ID1] = (b1, x1, X1). If b1 = 0,
then A simulates signer ID1 following the real Sign(x1, L,m) algorithm using x1 as a secret
key. If b1 = 1, it simulates the signing protocol as follows.

It first chooses t1
$← {0, 1}l0 and sends t1 to all other cosigners. After having received t2, . . . , tn

from all other cosigners (whose role is played by F), it chooses c
$← {0, 1}l1 , s1

$← Z∗N and
computes R1 ← se1X

−c
1 mod N . If T0[R1] has already been defined, then A sets bad1 ← true

27

and halts returning (0, ε); otherwise, it sets T0[R1]← t1. For all 2 ≤ i ≤ n, A looks up values
Ri such that T0[Ri] = ti. If for some i multiple such values are found, A sets bad2 ← true

and halts returning (0, ε). If for some i no such value was found then it sets alert ← true;
otherwise, it computes R ←

∏n
i=1Ri mod N and sets T1[R‖〈L〉‖m]← c, or sets bad3 ← true

and halts with output (0, ε) if this entry was already defined. It sends R1 to all other cosigners.

After having received R′2, . . . , R
′
n from the cosigners, A verifies that H0(R

′
i) = ti for all 2 ≤ i ≤

n. If not, it ends this signing protocol with local output ⊥. If Ri 6= R′i for some i, then A sets
bad2 ← true and halts with output (0, ε). If alert = true then it sets bad4 ← true and halts
with output (0, ε). Otherwise, it sends si to all cosigners.

After having received s2, . . . , sn from the cosigners, A computes s←
∏n
i=1 si mod N and returns

the signature (c, s) to F.

Eventually, F outputs a forged signature (c, s) together with multiset of identities L = {ID1, . . . , IDn}
and message m. Algorithm A computes performs additional random oracle queries H2(ID i) for 1 ≤
i ≤ n, computes R← se

∏n
i=1H2(ID i)

−c and performs another random oracle query H1(R‖〈L〉‖m).

Let U ⊆ {ID1, . . . , IDn} be the uncorrupted identities in L, meaning those for which F never submit-
ted a key derivation query. If the forgery is invalid, meaning that Vf(mpk , L,m, (R, s)) = 0, U = ∅,
or F previously made a signing query (ID , L,m), then A returns (0, ε). Otherwise, algorithm A looks
up T2[ID i] = (bi, xi, Xi) for 1 ≤ i ≤ n. Let L0 = {ID i : bi = 0} and L1 = {ID i : bi = 1}. Since the
forgery is valid, we have that

se ≡ R ·
n∏
i=1

Xc
i ≡ R ·

n∏
i=1

xeci ·
∏
i∈L1

yc mod N .

Let J be the index such that hJ = c = T1[R‖〈L〉‖m]. If L1 = ∅ then A sets bad0 ← true and halts
with output (0, ε). Otherwise, it lets x←

∏n
i=1 xi, n1 ← |L1|, and halts with output (J, (x, c, s, n1)).

We want to lower-bound the probability that A produces a “useful” output, i.e. an output other
than (0, ε). This is exactly the accepting probability acc as defined in Lemma 3.1 with respect to

H = {0, 1}l1 and an input generator IG that returns triples (N, e, y) such that (N, e, d)
$← Kgrsa and

y
$← Z∗N . We overload our notation to let bad i denote the event that the flag bad i gets set to true

during the execution of A. We can lower-bound the accepting probability of A probability by:

acc ≥ ε · Pr [¬bad0]− Pr [bad1]− Pr [bad2]− Pr [bad3]− Pr [bad4] . (7)

First, let’s take look at the factor Pr [¬bad0]. The flag bad0 gets raised whenever F makes a key
derivation query for an identity for which b = 1, and if the final forgery does not contain any identities
for which b = 1. Since the set L in the forgery must contain at least one uncorrupted identity, we
have that Pr [¬bad0] ≥ δqK(1− δ). This function reaches a maximum for δ = qK/(qK + 1); filling in
this value of δ in the above expression gives

Pr [¬bad0] ≥
(

qK
qK + 1

)qK
· 1

qK + 1
=

1

qK
·
(

1− 1

qK + 1

)qK+1

from which we can conclude that

Pr [¬bad0] ≥ 1

4qK
, (8)

because Pr [¬bad0] = 1 if qK = 0, because Pr [¬bad0] ≥ 1/(4qK) for qK = 1, and because (1 −
1/(qK + 1))qK+1 is a monotonically increasing sequence for qK ≥ 1.

28

The flag bad1 gets raised during one of the qS signature queries when T0[·] is defined for an argument
that is uniformly distributed over Z∗N and that is independent from F’s view. Since at any moment
there are at most qH + nmaxqS entries defined in table T0, the probability that this happens is at
most

Pr [bad1] ≤ qS · (qH + nmaxqS)

2lN
. (9)

The flag bad2 only gets raised when two different entries in T0 have the same value assigned to them.
Since T0 contains at most qH + nmaxqS values that are all chosen uniformly at random from {0, 1}l0
this happens with probability at most

Pr [bad2] ≤ (qH + nmaxqS)2

2lN+1
. (10)

To bound the probability that bad3 is raised during the i-th signing query, we distinguish between
the case that F “knows” R1, meaning that it either queried H0(R1) directly, or saw R1 as the honest
signer’s randomness in a previous signature query, and the case that it doesn’t “know” R1. In the
latter case, F’s view is independent of R, so the probability that this happens is simply given by
the number of defined entries in T1, which is at most qH + qS, divided by 2lN . In the former case,
we cannot say that F’s view is independent of R, so F may have queried H1(R, 〈L〉,m) on purpose.
Suppose F previously made a query H0(R1). Until right before this query, F’s view was independent
of R1, so it had probability at most qH/2

lN to guess it correctly during any of its qH queries. Likewise,
the probability that A previously used the same randomness R1 in a signature simulation is at most
qS/2

lN . In total, we have that

Pr [bad3] ≤ qS ·
(
qH + qS

2lN
+
qH
2lN

+
qS
2lN

)
=

2qS(qH + qS)

2lN
. (11)

Lastly, the probability that bad4 gets set is bounded by the probability that F managed to “predict”
the value of H0(Ri) during one of the qS signature protocols and for one of the at most nmax signers,
which is

Pr [bad4] ≤ nmaxqS
2l0

. (12)

Combining Equations (7–12) and using nmax > 0 gives

acc ≥ ε

4qK
− qS(qH + nmaxqS)

2lN
− (qH + nmaxqS)2

2lN+1
− 2qS(qH + qS)

2lN
− nmaxqS

2l0

≥ ε

4qK
− 3qS(qH + nmaxqS)

2lN
−
q2H + 2nmaxqSqH + n2maxq

2
S

2lN+1
− nmaxqS

2l0

≥ ε

4qK
−
q2H + 4nmaxqSqH + 4n2maxq

2
S

2lN
− nmaxqS

2l0
. (13)

Now consider an algorithm B that on input (N, e, y) runs the forking algorithm FA((N, e, y)), which
with probability frk returns a tuple (1, (x, c, s, n1), (x

′, c′, s′, n′1)) with c 6= c′. Since these originate
from valid forgeries, their values are such that

se ≡ Rxecycn1 mod N and s′
e ≡ R′x′ec

′
yc
′n′1 mod N .

The two executions of A when run by FA are identical up to the “crucial” random oracle queries
H1(R‖〈L〉‖m) and H1(R

′‖〈L′〉‖m′), where R,L,m and R′, L′,m′ are the randomness, identity sets
and messages that F used in its first and second forgeries, respectively. By the construction of A, we
know that the two executions of F are identical up to this query (because it was provided with the

29

exact same input, random tape and oracle responses), so in particular we have that R = R′, L = L′

and m = m′. Since the entries T2[ID i] = (bi, xi, Xi) for ID i ∈ L = L′ are chosen by A at the latest at
the time of the crucial hash query, we also have that x = x′ and n1 = n′1. Dividing and reorganizing
the two equations above gives

(xc−c
′
s/s′)e ≡ y(c−c

′)n1 mod N .

Since c 6= c′ ∈ {0, 1}l1 , n1 ≤ nmax, and e is a prime of length strictly greater than l1 + log2(nmax),
we have that e > (c− c′)n1 and therefore that gcd(e, (c− c′)n1) = 1. Using the extended Euclidean
algorithm, one can find a, b ∈ Z such that ae+ b(c− c′)n1 = 1. We then have that

y ≡ yae+b(c−c
′)n1 ≡

(
ya · (xc−c′s/s′)b

)e
mod N .

Algorithm B can therefore output ya · (xc−c′s/s′)b as the RSA inversion of y. The probability that
algorithm B succeeds in doing so is given by

ε′ ≥ frk

≥ acc2

qH + 1
− 1

2l1

≥ ε2

16q2K(qH + 1)
− 2 ·

(
q2H + 4nmaxqSqH + 4n2maxq

2
S

2lN
− nmaxqS

2l0

)
− 1

2l1

where in the last step we use Equation (13) and the facts that (a − b)2 ≥ a2 − 2ab and that 0 ≤
ε/4qK ≤ 1. The theorem follows.

We have left to show the bound for the running time t′ of B. We permit ourselves to assume that
(multi-)exponentiations in Z∗N take time texp while all other operations take zero time. The running
time of B is twice that of A, plus one multi-exponentiation mod N . The running time of A is that
of the forger F plus one at most nmax + 1 multi-exponentiations plus the time needed to answer
F’s oracle queries. Each random oracle or key derivation query takes at most one exponentiation.
A signature simulation takes at most nmax + 1 exponentiations. We therefore have that t′ = 2t +
2(nmax + 2 + qH + qK + qS(nmax + 1)) · texp.

Acknowledgments

Mihir Bellare was supported by NSF grant CNS-0524765 and a gift from Intel Corporation. Gregory
Neven is a Postdoctoral Fellow of the Flemish Research Foundation (FWO – Vlaanderen), and was
supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish
Government and in part by the European Commission through the IST Programme under Contract
IST-2002-507932 ECRYPT.

References

[AFKM05] Carlisle Adams, Stephen Farrell, Tomi Kause, and Tero Mononen. Internet X.509 public
key infrastructure certificate management protocol (CMP). Internet Engineering Task
Force RFC 4210, 2005. (Cited on page 2.)

30

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 116–129, Kyoto, Japan, December 3–7, 2000.
Springer-Verlag, Berlin, Germany. (Cited on page 10.)

[BA03] Kenneth Barr and Krste Asanovic. Energy aware lossless data compression. In Proceed-
ings of the First International Conference on Mobile Systems, Applications, and Services
(MobiSys 2003), pages 231–244. ACM Press, 2003. (Cited on pages 1 and 6.)

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer
Science, pages 390–420, Santa Barbara, CA, USA, August 16–20, 1992. Springer-Verlag,
Berlin, Germany. (Cited on page 2.)

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology –
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 416–432,
Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany. (Cited on pages 3, 5,

7, 8, 15, 24 and 37.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In ACM CCS 06: 13th Conference on Computer and Commu-
nications Security, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM
Press. (Cited on pages i, 7 and 8.)

[BN07] Mihir Bellare and Gregory Neven. Identity-based multi-signatures from RSA. In
Masayuki Abe, editor, Topics in Cryptology – CT-RSA 2007, volume 4377 of Lecture
Notes in Computer Science, pages ?–?, San Francisco, CA, USA, February 5–9, 2007.
Springer-Verlag, Berlin, Germany. (Cited on page i.)

[BNN04] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-
based identification and signature schemes. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 268–286, Interlaken, Switzerland, May 2–6, 2004. Springer-
Verlag, Berlin, Germany. (Cited on pages 3, 7, 24 and 27.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography, volume
2567 of Lecture Notes in Computer Science, pages 31–46, Miami, USA, January 6–8, 2003.
Springer-Verlag, Berlin, Germany. (Cited on pages 1, 2, 3, 4, 8, 15, 17 and 37.)

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of
security against impersonation under active and concurrent attacks. In Moti Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 162–177, Santa Barbara, CA, USA, August 18–22, 2002. Springer-Verlag,
Berlin, Germany. (Cited on page 5.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM CCS 93: 1st Conference on Computer and Com-
munications Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM
Press. (Cited on pages 2, 8 and 9.)

[BRY06] Mihir Bellare, Thomas Ristenpart, and Scott Yilek. Work in progress. 2006. (Cited on

page 2.)

[BSL01] Dan Boneh, Hovav Shacham, and Ben Lynn. Short signatures from the Weil pairing. In
Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture
Notes in Computer Science, pages 514–532, Gold Coast, Australia, December 9–13, 2001.

31

Springer-Verlag, Berlin, Germany. (Cited on pages 4 and 5.)

[CC03] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap Diffie-
Hellman groups. In Yvo Desmedt, editor, PKC 2003: 6th International Workshop on
Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Com-
puter Science, pages 18–30, Miami, USA, January 6–8, 2003. Springer-Verlag, Berlin,
Germany. (Cited on page 27.)

[CJKT06] Claude Castelluccia, Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Secure acknowl-
edgment aggregation and multisignatures with limited robustness. Computer Networks,
50(10):1639–1652, 2006. (Cited on page 7.)

[CLW05] Xiangguo Cheng, Jingmei Liu, and Xinmei Wang. Identity-based aggregate and verifiably
encrypted signatures from bilinear pairing. In Osvaldo Gervasi, Marina L. Gavrilova,
Vipin Kumar, Antonio Laganà, Heow Pueh Lee, Youngsong Mun, David Taniar, and
Chih Jeng Kenneth Tan, editors, Computational Science and Its Applications ICCSA
2005, volume 3483 of Lecture Notes in Computer Science, pages 1046–1054. Springer-
Verlag, Berlin, Germany, 2005. (Cited on pages 8 and 24.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor,
Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 229–235, Santa Barbara, CA, USA, August 20–24, 2000. Springer-Verlag,
Berlin, Germany. (Cited on page 27.)

[CV90] David Chaum and Hans Van Antwerpen. Undeniable signatures. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer
Science, pages 212–216, Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag,
Berlin, Germany. (Cited on page 21.)

[DKXY03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-insulated
signature schemes. In Yvo Desmedt, editor, PKC 2003: 6th International Workshop
on Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in
Computer Science, pages 130–144, Miami, USA, January 6–8, 2003. Springer-Verlag,
Berlin, Germany. (Cited on pages 3, 7 and 24.)

[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction. In 33rd Annual Symposium on Foundations of Computer Science, pages
427–436, Pittsburgh, Pennsylvania, October 24–27, 1992. IEEE Computer Society Press.
(Cited on page 2.)

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988. (Cited on page 27.)

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 152–168, Santa Barbara, CA, USA,
August 14–18, 2005. Springer-Verlag, Berlin, Germany. (Cited on page 2.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer-Verlag, Berlin, Germany. (Cited on pages 5

and 27.)

[GHK06] David Galindo, Javier Herranz, and Eike Kiltz. On the generic construction of identity-
based signatures with additional properties. In Xuejia Lai, editor, Advances in Cryptology
– ASIACRYPT 2006, Lecture Notes in Computer Science, Shanghai, China, December 3–
7, 2006. Springer-Verlag, Berlin, Germany. (Cited on pages 3 and 7.)

[GJ03] Eu-Jin Goh and Stanislaw Jarecki. A signature scheme as secure as the Diffie-Hellman

32

problem. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 401–415, Warsaw, Poland, May 4–8,
2003. Springer-Verlag, Berlin, Germany. (Cited on page 21.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988. (Cited on page 9.)

[GPS06] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptogra-
phers. http://eprint.iacr.org/, 2006. (Cited on pages 3, 4 and 7.)

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based sig-
nature scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances in
Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages 216–
231, Santa Barbara, CA, USA, August 21–25, 1990. Springer-Verlag, Berlin, Germany.
(Cited on pages 7, 24 and 26.)

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung,
editor, PKC 2006: 9th International Workshop on Theory and Practice in Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 257–273, New
York, NY, USA, April 24–26, 2006. Springer-Verlag, Berlin, Germany. (Cited on pages 3,

4, 7, 8, 24 and 25.)

[Har94] Lein Harn. Group-oriented (t, n) threshold digital signature scheme and digital multisig-
nature. IEE Proceedings – Computers and Digital Techniques, 141(5):307–313, September
1994. (Cited on page 1.)

[Hes03] Florian Hess. Efficient identity based signature schemes based on pairings. In Kaisa
Nyberg and Howard M. Heys, editors, SAC 2002: 9th Annual International Workshop
on Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science,
pages 310–324, St. John’s, Newfoundland, Canada, August 15–16, 2003. Springer-Verlag,
Berlin, Germany. (Cited on page 27.)

[HMP95] Patrick Horster, Markus Michels, and Holger Petersen. Meta-multisignatures schemes
based on the discrete logarithm problem. In IFIP TC11 Eleventh International Confer-
ence on Information Security (IFIP/SEC 1995), pages 128–141. Chapman & Hall, 1995.
(Cited on pages 1 and 16.)

[HOT04] Ryotaro Hayashi, Tatsuaki Okamoto, and Keisuke Tanaka. An RSA family of trap-
door permutations with a common domain and its applications. In Feng Bao, Robert
Deng, and Jianying Zhou, editors, PKC 2004: 7th International Workshop on Theory
and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in Computer
Science, pages 291–304, Singapore, March 1–4, 2004. Springer-Verlag, Berlin, Germany.
(Cited on page 6.)

[HS03] Javier Herranz and Germán Sáez. Forking lemmas for ring signature schemes. In Thomas
Johansson and Subhamoy Maitra, editors, Progress in Cryptology – INDOCRYPT 2003,
volume 2904 of Lecture Notes in Computer Science, pages 266–279. Springer-Verlag,
Berlin, Germany, 2003. (Cited on page 5.)

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisigna-
tures. NEC Research & Development, 71:1–8, 1983. (Cited on pages 1 and 6.)

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number
Theory Symposium – ANTS IV, volume 1838 of Lecture Notes in Computer Science, pages
385–394. Springer-Verlag, Berlin, Germany, 2000. (Cited on pages 3, 7 and 24.)

[KW03] Jonathan Katz and Nán Wáng. Efficiency improvements for signature schemes with tight
security reductions. In ACM CCS 03: 10th Conference on Computer and Communica-
tions Security, pages 155–164, Washington D.C., USA, October 27–30, 2003. ACM Press.

33

http://eprint.iacr.org/

(Cited on pages 3 and 21.)

[Lan96] Susan K. Langford. Weakness in some threshold cryptosystems. In Neal Koblitz, edi-
tor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in Computer
Science, pages 74–82. Springer-Verlag, Berlin, Germany, 1996. (Cited on pages 1 and 16.)

[LHL95] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. Threshold-multisignature schemes
where suspected forgery implies traceability of adversarial shareholders. In Alfredo De
Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes
in Computer Science, pages 194–204. Springer-Verlag, Berlin, Germany, 1995. (Cited on

page 1.)

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggre-
gate signatures from trapdoor permutations. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 74–90, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag,
Berlin, Germany. (Cited on pages 6, 8 and 37.)

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Serge Vaudenay,
editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, St. Petersburg, Russia, May 29 –June 1, 2006. Springer-Verlag,
Berlin, Germany. Available as Cryptology ePrint Report 2006/096. (Cited on pages 1, 2,

3, 4, 8, 15 and 17.)

[LWH01] Chih-Yin Lin, Tzong-Chen Wu, and Jing-Jang Hwang. ID-based structured mulitsigna-
ture schemes. In Bart De Decker, Frank Piessens, Jan Smits, and Els Van Herreweghen,
editors, Advances in Network and Distributed Systems Security, IFIP TC11 WG11.4
First Annual Working Conference on Network Security, volume 206 of IFIP Conference
Proceedings, pages 45–60. Kluwer, 2001. (Cited on page 37.)

[MH96] Markus Michels and Patrick Horster. On the risk of disruption in several multiparty
signature schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in
Cryptology – ASIACRYPT’96, volume 1163 of Lecture Notes in Computer Science, pages
334–345. Springer-Verlag, Berlin, Germany, 1996. (Cited on pages 1 and 16.)

[Mit01] Chris J. Mitchell. An attack on an ID-based multisignature scheme. Technical Report
RHUL-MA-2001-9, Royal Holloway University of London, 2001. (Cited on page 37.)

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures.
In ACM CCS 01: 8th Conference on Computer and Communications Security, pages
245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press. (Cited on pages 1, 3,

4, 7, 8, 15, 16, 17, 20 and 37.)

[OO90] Kazuo Ohta and Tatsuaki Okamoto. A modification of the Fiat-Shamir scheme. In Shafi
Goldwasser, editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture Notes
in Computer Science, pages 232–243, Santa Barbara, CA, USA, August 21–25, 1990.
Springer-Verlag, Berlin, Germany. (Cited on page 27.)

[OO91] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the Fiat-
Shamir scheme. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors,
Advances in Cryptology – ASIACRYPT’91, volume 739 of Lecture Notes in Computer
Science, pages 139–148. Springer-Verlag, Berlin, Germany, 1991. (Cited on page 1.)

[OO99] Kazuo Ohta and Tatsuaki Okamoto. Multi-signature schemes secure against active in-
sider attacks. IEICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences, E82-A(1):21–31, 1999. (Cited on page 1.)

[OS90] H. Ong and Claus-Peter Schnorr. Fast signature generation with a Fiat Shamir–like
scheme. In Ivan Damg̊ard, editor, Advances in Cryptology – EUROCRYPT’90, volume

34

473 of Lecture Notes in Computer Science, pages 432–440, Aarhus, Denmark, May 21–24,
1990. Springer-Verlag, Berlin, Germany. (Cited on page 27.)

[PKC00] PKCS #10: Certification request syntax standard. RSA Data Security, Inc., 2000. (Cited

on page 2.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000. (Cited on pages 4, 5, 7, 9 and 12.)

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smartcards. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 239–252, Santa Barbara, CA, USA, August 20–24, 1990.
Springer-Verlag, Berlin, Germany. (Cited on page 12.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptol-
ogy, 4(3):161–174, 1991. (Cited on page 2.)

[Sch05] Jim Schaad. Internet X.509 public key infrastructure certificate request message format.
Internet Engineering Task Force RFC 4211, 2005. (Cited on page 2.)

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture
Notes in Computer Science, pages 47–53, Santa Barbara, CA, USA, August 19–23, 1985.
Springer-Verlag, Berlin, Germany. (Cited on pages 3, 6, 24 and 27.)

[WH02] Tzong-Sun Wu and Chien-Lung Hsu. ID-based multisignatures with distinguished sign-
ing authorities for sequential and broadcasting architectures. Applied Mathematics and
Computation, 131(2-3):349–356, 2002. (Cited on page 37.)

[Yi03] Xun Yi. An identity-based signature scheme from the Weil pairing. IEEE Communica-
tions Letters, 7(2):76–78, February 2003. (Cited on page 27.)

[YLL05] W.C. Yang, C.S. Laih, and C.C. Lin. Known signature attack on Wu-Hsu’s ID-based
multi-signature schemes. Manuscript available from http://crypto.ee.ncku.edu.tw/

~wcyang/, 2005. (Cited on page 37.)

A Expected-Time Forking Lemma

Lemma A.1 [Simple Expected-Time Forking Lemma] Let q ≥ 1 be an integer, H a set of size
h ≥ 2, and A a randomized algorithm that on inputs x, h1, . . . , hq returns an integer in the range
0, . . . , q after at most TA(|x|) time steps. Let B be a brute-force algorithm that on input x returns ε
after at most TB(|x|) time steps. The accepting probability acc(A, x) is defined to be the probability
that the following experiment returns 1:

Pick coins ρ for A at random

h1, . . . , hq
$← H ; i← A(x, h1, . . . , hq; ρ)

If i ≥ 1 then return 1 else return 0.

Then the forking algorithm FA(x):

Pick coins ρ for A at random

h1, . . . , hq
$← H ; i← A(x, h1, . . . , hq; ρ)

If i = 0 then return 0
Repeat, in parallel with B(x),

h′i, . . . , h
′
q

$← H

j ← A(x, h1, . . . , hi−1, h
′
i, . . . , h

′
q; ρ)

Until (i = j and hi 6= h′i) or B has halted
Return 1

35

http://crypto.ee.ncku.edu.tw/~wcyang/
http://crypto.ee.ncku.edu.tw/~wcyang/

returns 1 with probability acc(A, x) in expected time

TFA
(|x|) ≤ (4q + 1)TA(|x|) +

4q

h
·TB(|x|) . (14)

Proof of Lemma A.1: It is clear that the forking algorithm will eventually return 1 whenever
i > 0 after the first run of A, which happens with probability acc(A, x).

Let Xi be defined as in the proof of Lemma 3.1. Assuming that processor time is divided equally
between the two algorithms running in parallel, the expected running time of the forking algorithm
FA on input x is

TFA
(|x|) = TA(|x|) + E

[
q∑
i=1

Xi ·min
(

2TA(|x|) · Pr
[
i = j ∧ hi 6= h′i

]−1
, 2TB(|x|)

)]

≤ TA(|x|) + E

[
q∑
i=1

min
(

2Xi ·TA(|x|) · Pr
[
i = j ∧ hi 6= h′i

]−1
, 2Xi ·TB(|x|)

)]

≤ TA(|x|) +

q∑
i=1

(
2TA(|x|) ·E

[
Xi · Pr

[
i = j ∧ hi 6= h′i

]−1 ∣∣∣∣ Xi ≥
2

h

]
· Pr

[
Xi ≥

2

h

]

+ 2TB(|x|) ·E
[
Xi

∣∣∣∣ Xi <
2

h

]
· Pr

[
Xi <

2

h

])

≤ TA(|x|) +

q∑
i=1

(
2TA(|x|) ·E

[
Xi

Xi − h−1

∣∣∣∣ Xi ≥
2

h

]
·+ 4

h
·TB(|x|)

)

≤ TA(|x|) +

q∑
i=1

(
4TA(|x|) +

4

h
·TB(|x|)

)

= (4q + 1)TA(|x|) +
4q

h
·TB(|x|) ,

yielding Equation (14) as required. The fourth line above is true because

Pr [i = j] = Xi

= Pr
[
i = j ∧ hi = h′i

]
+ Pr

[
i = j ∧ hi 6= h′i

]
≤ 1

h
+ Pr

[
i = j ∧ hi 6= h′i

]
and since the expectation is conditioned on Xi ≥ 2

h >
1
h we have that

Pr
[
i = j ∧ hi 6= h′i

]−1 ≤ 1

Xi − h−1
. (15)

B Generic Constructions

We clarify the relation between the different types aggregate signatures and multisignatures by
presenting generic IAS constructions from all of these.

36

From GAS to IAS. A GAS scheme allows anyone (so not just signers) to combine a possibly
already aggregated signature σn authenticating messages m1, . . . ,mn under public keys pk1, . . . , pkn
with a signature σn+1 on message mn+1 under public key pkn+1 into a new compact signature σn+1

authenticating m1, . . . ,mn+1 under keys pk1, . . . , pkn+1.
Any GAS scheme naturally gives rise to an IAS scheme in the following way. The signers first

communicate to each other their public keys pk1, . . . , pkn and the messages m1, . . . ,mn that they
will be authenticating. Next, all signers create a signature under their own public key for message
m = 〈{(pk1,m1), . . . , (pkn,mn)}〉, and send this signature to all cosigners. Each signer computes the
combined signature by aggregating his own signature with all received signatures. Alternatively, the
signers could decide on one cosigner to do the aggregation and broadcast the result.

It is not hard to see that any GAS scheme secure under the notion of [BGLS03] yields a secure
IAS scheme under our notion. Note that the construction where each signer signs his own message mi

rather than m is not secure, because then the partial signatures can be reused in other aggregations,
which is not allowed under our notion. The only known implementation of GAS schemes is due
to [BGLS03] and is based on pairings.

From SAS to IAS. Similarly, any SAS scheme directly gives rise to an IAS scheme. Recall that
any signer in a SAS scheme can use his secret key to add a signature on his own message mn+1 to a
possibly already aggregated signature σn for messages m1, . . . ,mn under public keys pk1, . . . , pkn.

First, the signers decide on an order among them, and communicate to each other their messages
m1, . . . ,mn and public keys pk1, . . . , pkn. The first signer creates a signature for message m =
〈{(pk1,m1), . . . , (pkn,mn)}〉 using his own secret key, and passes this signature on to the second
signer. The second signer uses his secret key to add his own signature for m onto the signature that
he received, and sends the combined signature to the next signer in the chain. This process continues
until the last signer adds his signature on m, and sends the resulting signature to all cosigners.

Again, it is not hard to see that any scheme secure under the notion of [LMRS04] yields a secure
IAS scheme. The only practical SAS scheme known today is based on RSA [LMRS04], but suffers
from a couple of drawbacks as mentioned in the introduction.

From IAS to multisignatures and back. It is clear that signers in an IAS scheme can always
choose to sign the same message m, so any IAS scheme is at the same time a multisignature scheme.
Our results therefore contribute directly to the state of the art in multisignature schemes as well.
In particular, our work gives rise to the first multisignature schemes free of assumptions on key
generation, the first scheme with a tight security reduction, the first provably secure identity-based
multisignature scheme (a number of proposed schemes [LWH01, WH02] were later found to be
flawed [Mit01, YLL05]), and the first scheme with a security proof in the standard model.

Vice versa, a multisignature scheme can be converted into an IAS scheme by letting all signers
sign m = 〈{(pk1,m1), . . . , (pkn,mn)}〉. Disregarding the difference in assumptions on key setup, any
multisignature scheme secure in the notion of [MOR01] yields a secure IAS scheme in our notion. The
only provably secure multisignature schemes are due to [MOR01, Bol03] and are based on discrete
logarithms and pairings, respectively.

37

	Introduction
	Notation and Standard Definitions
	A Simple and General Forking Lemma
	Example Application to Schnorr Signatures
	Multi-Signatures
	A Multi-Signature Scheme based on Discrete Logarithms
	A Scheme with Tight Reduction to DDH
	An Identity-Based Scheme from RSA
	Expected-Time Forking Lemma
	Generic Constructions

