But first, heap or ZKP problem from midterm.

\[\text{Notation } \]
\[\text{ZK}^E(x,y) : x = a^x, y = a^y, y^2 = x^{a^2} + 7 \]

\[\text{Original predicate} \]
\[\text{derived predicate} \]

\[\text{introduce ephemeral commitment to } x \in \mathbb{Z} \]

\[\mathbb{k} \{ (x, y, z, r) : x = a^x, y = a^y, z = a^{z^2} + 1 \} \text{ and } \exists x^2 \in \mathbb{Z} \]

\[\text{ephemeral commitment to } x^2 \]

\[\text{proof}(x) \]
\[k_x \cdot z \]
\[k_v = k \cdot k_y = k_z \]
\[k_c = k \cdot k_y \]
\[r = r \]
\[C = \mathbb{k}(k) \]
\[K_c = X \cdot Y \cdot k \cdot k_y \cdot k_x \cdot k_t \]

\[c \]

\[s_x = k_x + c \]
\[s_y = k_y + c \]
\[s_z = k_z + c \]
\[s_2 = k_2 + c \]

\[\text{Correctness (sanity check) just on } 5 \text{ using honest} \]
\[\text{proof} \]

\[\text{Y}(X) = K_y \cdot Y \cdot c \]
\[(g^x) \cdot (g^y) \cdot k_2 + c \]
\[y(k_y \cdot y) = x(k_2 + c) \]
\[y^2 = x^3 + 7 \]
\[s_x = k_x \]
$y = x + c$

$y^2 - x^2 = 3$

$y_{k_1} + y_{k_2} - x_{k_1} + y_{k_2} + c x^3 = y_{k_1} - x_{k_2} + c (y^2 + x^3) = y_{k_1} + y_{k_2} + c (7)$

Extractor:

Run A twice to receive same c, k different c, k'

$y_{k_1}, y_{k_1}', s_2, s_2', s_2''$, c, c'

$y_{k_1} - y_{k_1}' = (s_2 - s_2') / (c' - c)$

$y_{k_1} y_{k_1}' = y (X) / g$

$y_{k_1} y_{k_1}' = y (X) / g$

$z = (s_2 - s_2') / (c' - c)$

$y_{k_1} y_{k_1}' = y (X) / g$

$z = (s_2 - s_2') / (c' - c)$

We start by extracting (x, y, z, r)

All satisfying $z = x^2$

$z = x^2$, and $z = x^2$ imply $z = x^2$

Lattices:

Three equivalent definitions:

$\forall \mathbf{a} \in \Lambda$, \mathbf{a} is a subgroup

- We will use them for
- Cryptography constructions
- and cryptanalysis
- Lots of hard problems like SVP, LWE
- Lots of structure (for ZF proofs, homomorphic)
Def'n 1: \(\Lambda \) is a subgroup of \(\mathbb{Z}^n \) for integers \(n \geq 0 \) under addition.

Ex. Lattices over \(\mathbb{Z}^2 \):

\[
\begin{align*}
\mathbb{Z}_0^2 & \quad | \quad 36 \\
\langle (1,2) \rangle & \quad | \quad \langle 0,1 \rangle \\
\langle 0,0 \rangle & \quad | \\
\end{align*}
\]

This is the definition most closely following our group theory style.

Def'n 2: \(\Lambda(A) \) is the integer span of \(A \) is a \((n \times m)\) matrix.

A set of basis vectors which are \(\Lambda \in \mathbb{Z}^m \) the rows of \(A \):

\[
\Lambda(A) = \left\{ \sum_{i=1}^{m} s_i \mathbf{v}_i \mid \mathbf{v}_i \in \mathbb{Z}^n \quad s_i \in \mathbb{Z} \right\}
\]

\[
= \{ \mathbf{x} \in \mathbb{Z}^n \mid A\mathbf{x} = \mathbf{0} \text{ for some } s \in \mathbb{Z} \}
\]

\[
= \{ \mathbf{x} \in \mathbb{Z}^n \mid A^T \mathbf{x} = \mathbf{0} \}
\]

Def'n 3: \(\Lambda(A) = \left\{ \mathbf{x} \in \mathbb{Z}^n \mid \tilde{A}\mathbf{x} = \mathbf{0} \right\} \) is a dual basis.

Assume \(\tilde{A} \) is linearly independent in columns and rows. So (1) & (2) are equal.

\[
\tilde{A} = A^T (AA^T)^{-1}
\]

\[
(A^T A)^{-1} A^T
\]

Claim (no proof): Def'n 3 is equivalent to Def'n 2.
Claim (no proof): Def'n 3 is equivalent to Def'n 2

Lattice problems:
- Shortest vector problem SVP.
 Given a basis \(\mathbf{A} \in \mathbb{Z}_q^{m \times n} \),
 find the smallest non-zero vector in \(\Lambda(\mathbf{A}) \) with maximum distance
 \[\| \mathbf{x} \| = \sqrt{\sum (x[i])^2} \]
This is thought to be hard for random matrices \(\mathbf{A} \)

- One form relevant to us:
 Given \(\mathbf{A} \), find some \(\mathbf{x} \in \Lambda(\mathbf{A}) \) s.t.
 \[\| \mathbf{x} \| \leq \sqrt{n} \]
 This is a ball containing hypercube, \(\varepsilon=1,1/\sqrt{m} \)
 example: \(\mathbf{x} = (0,1,0,0,1,\ldots) \)

- Ajtai hash function.
 Setup: Let \(\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times n} \) \(m > 2n \log_2 q \)
 So this is compressing but we show, hard to find collisions must exist.
 \(\mathbb{E}_\mathbf{A} : \{0,1\}^m \rightarrow \mathbb{Z}_q^{m \times n} \)

Claim: Ajtai is collision resistant if SVP is hard
 If we can find \(\mathbf{x}_1 \neq \mathbf{x}_2 \in \{0,1\}^m \)
 such that \(\mathbf{A} \mathbf{x}_1 = \mathbf{A} \mathbf{x}_2 \)
 \(\mathbb{E}(\mathbf{A}) \)
Such that \(\mathbf{Ax}_i = \mathbf{Ax}_2 \)

then we can solve the \(\|x\|_2 \leq \sqrt{n} \) - SVP on \(\Lambda(\tilde{A}) \)

\(\text{Proof:} \) Suppose \(\Lambda(\tilde{A}) \) outputs a \(\|x\|_2 \leq \sqrt{n} \) \(x_1, x_2 \in \mathbb{R}^n \)

We can construct \(\tilde{A}'(\tilde{A}) \) that finds a non-zero vector to solve SVP.

\(\tilde{A}'(\tilde{A}): \) Compute \(\Lambda(\tilde{A}) \)

\(\tilde{\mathbf{Az}} = 0 \)

\(x_1, x_2 \in \Lambda(\tilde{A}) \)

\(x_1 = (0, 0, 0, \ldots, 1) \in \mathbb{R}^n \)

\(x_2 = (1, 1, \ldots) \in \mathbb{R}^n \)

\(\mathbf{Ax}_1 = \mathbf{Ax}_2 \)

\(\mathbf{Ax}_1 - \mathbf{Ax}_2 = 0 \)

\(\|x_1 - x_2\| \)

So \(\mathbf{z} = x_1 - x_2 \) satisfies \(\|\mathbf{z}\|_2 = \sqrt{n} \) SVP.