One time hash based signatures

- Lamport Signature

 Key gen

 \[\text{Key gen} \]

 \[|\text{sk}| = 2n^2 \]

 \[\text{SPHINCS} \]

 \[\text{sk} = [k_0, k_1, k_2, k_3, \ldots] \]

 \[\text{pk} = [h_{\text{root}}] \]

 \[\text{Sign} (\text{sk}, m) = m' \]

- Winternitz Z.

- Redeemed delegation

- Lamport

- Winternitz
Verification (w_i, h_L, h_R):

$$H(H(h_L) || H^4(w_i(h_R))) = \text{root}.$$

Refereed Delegation

Verifier

Client accepts y

then $y = f(x)$

Security goal:

Any-trust setting

N servers, assume at least 1 server is honest

1. Check if all equal

\[Y'_1 = Y'_2 = Y'_3 \]

2. Run a reconciliation protocol to find a correct server.

Performance goal:

Verifier's work: $\mathcal{O}(N \cdot \log |E|)$
Idea

\[S(x) = g(g(g(\ldots g(x)))\ldots) = g^{|f|}(x) \]

Example: \(x' \neq y \)

\[x \xrightarrow{g} y' \]

\[y = g(x) \]

Method

\[y_1', y_2', x \]

\[y_1', y_2', x \]