Secret Sharing
sevethey Se vet, shaing Badlups

2-of-3 sevet sharing
-any 2 shaces canbe combited to get x

Hou do wedoth.s?
Polynomials and interpdation
Used to prlynmials over \mathbb{R}
Shive folds

Here we're using polysamials over \mathbb{F}_{p}
e.g. $\quad f(\underline{x})=5 x^{2}+4 x_{a}+2$
degte ocfis 2
pover of the leding term raciable Univarate polymomid

$$
\begin{aligned}
& y^{2}=x^{3}+7 \quad \text { secp } 25641 \text { ellphlcure } \\
& f: F_{\rho} \rightarrow F_{\rho}
\end{aligned}
$$

Aseenk poly is represented by $k+1$ coesficions

$$
\begin{gathered}
f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{1} x+a_{0} \\
f(x)=\sum_{i}^{k} a_{i} x^{i}
\end{gathered}
$$

Degsee Vki degree-bueral

$$
0 x^{3}+0 x^{2}+5 x+7
$$

- Are polyormials agroup?
- equality of plynomials

$$
\begin{aligned}
& 1: \text { by of polynomial } \\
& f=g \text { iff } \quad \forall x \in F_{\rho}, f(x)=g(x)
\end{aligned}
$$

- addithn:

$$
(f+g)(x)=\underline{f(x)}+g(x)
$$

equiralerty:

$$
\begin{aligned}
& \text { alerty: }\left(a_{0}, a_{1}, \ldots a_{k}, x\right)=\sum_{i} a_{i} x^{i} \\
& \text { eval }\left(b_{0}, \ldots b_{k}, x\right)= \\
& \operatorname{evaral}\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots a_{k}+b_{x}, x\right)
\end{aligned}
$$

ada the wesficuers
id: $\quad f(X)=\gamma$

- Do degree-k prlys forma groy?
- Polynomials form aring:

$$
\begin{aligned}
& (f \cdot g)(x)=f(x) \cdot f(y) \\
& \left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right) \\
& a_{0} b_{0}+\left(a_{1} b_{0}+b_{1} a_{0}\right) x+\ldots a_{2} b_{2} x^{4}
\end{aligned}
$$

Lagrange interpolation
Tho, Given any $k+1$ points $\left(x_{0}, x_{k}\right), \ldots\left(x_{k}, y_{n}\right)$ (distinct x_{i}) we can find a degree k polynomial δ such that $\forall x_{i}$ osisk, $f\left(x_{i}\right)=y_{i}$

Format this takes is:

$$
\begin{aligned}
& \text { his takes is } \\
& f(x)=\sum_{i=0}^{k} y_{i} \cdot p_{i}^{r}(\underline{-}) .
\end{aligned}
$$

Lemma: Lagrange plyamian:
Given $k+1$ disthet values $\left(X_{0}, \ldots X_{k}\right)$
We can fond ${ }^{-k}$ pilynominds $P_{i}(x)$
such that

$$
\begin{array}{ll}
\text { that } \\
\forall x_{j,}, & f_{i}\left(x_{j}\right)
\end{array}= \begin{cases}1 & \text { if } \\
0 & i=j \\
0 & i \neq j\end{cases}
$$

$\left(x_{k}\right)\left(x_{1}\right), \sim\left(x_{k}\right)$

$$
\begin{array}{ccccc}
\rho_{0} & 1 & 0 & \ddots & 0 \\
\rho_{1} & 0 & 1 & 0 & \cdots \\
\vdots & \ddots & \vdots \\
\rho_{k} & \ddots & \ddots & \ddots & 1
\end{array}
$$

How do we construct p_{i} ?
Start with $\rho_{0}(x) \quad \rho_{0}\left(x_{0}\right)=1, f_{0}\left(x_{i}\right)=0 \quad \begin{aligned} & \text { ri: }: \neq 0 \\ & x_{1}, \ldots x_{k}\end{aligned}$

$$
\rho_{0}(x)=1 \frac{\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot \cdots \cdot\left(x-x_{k}\right)}{\left(x_{0}-x_{1}\right) \cdot\left(\underline{x}_{0}-x_{2}\right) \cdot\left(x_{0}-x_{k}\right)}
$$

$$
\begin{gathered}
\rho_{1}(k) \quad \frac{\left(x-x_{1}\right)}{\left(x_{1}-x_{0}\right)} \cdot 1 \cdot \frac{\left(x-x_{2}\right)}{\left(\underline{x_{1}}-x_{2}\right)} \cdots \\
P_{i}(k)=\prod_{j=0, j \neq i}^{k} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}
\end{gathered}
$$

How to do k.of-n secets sharing of secet vale $s \in$ Ffp

1. Choose a randen degree- $(k-1)$ palmonial f

Such that $\delta(\underline{0})=S$

$$
f(x)=a_{k-1} x^{n-1}+\ldots a_{1} x+s \quad\left(a_{0}=s\right)
$$

draweach a_{i} brlsisk-1 as $a_{i} \in F_{p}$
2. Let the sharesbe:

$$
(1, f(1)),(2, f(2)), \ldots,(n, f(n))
$$

Send ead share $(i, f(i))$ to note :
ir store eachture $(i, f(i))$ at safehuvei
3. To reonstuct giten any K shaes $\left(X_{i}, f\left(x_{i}\right)\right.$

$$
S=f(0)=\sum_{x_{i}} f\left(x_{1}\right)\left(\prod_{x_{i} \neq x_{i}} \frac{0-x_{i}}{x_{i}-x_{j}}\right)
$$

- prlycomial evaliarion $a_{0}+a_{1} \cdot x \ldots a_{n} x^{n}$

Horner's rule for poly evaluation

- Robust:

Goal' tolerate up to f invalid/maliouss shares. Srillusha: desree-(f) plynomial.

How many shares wolld you need.
ould atay?

$$
s^{\prime}=S \mid 000^{a} \quad y_{0}, y_{1} y_{2}\left(y_{3}+s^{\prime} \text { loaw }\right)
$$

$f+2$ shoes if 5 ollude,
Degreert
if $+72 \delta$ then even if f allude
$3 f+1$ shares degree δ polknomial
1 - any $(\delta+1)$ valus uniquely determhe apolymanal of deberef
2 - if refind ($\alpha+1$) Sheres, such thectreenstucted poly ϕ^{\prime}
Coinades with $\left(2 \frac{f+1}{}\right)$ shares
then be know $\phi^{\prime}=\phi \uparrow$ orighal polynemalal

- why? At most 5 haecenors.

At temst StI are goidshees
3- if Ihare any 3ftl shees, Some sudet of $2 \mathrm{ft} /$ shaes aegood impling 2 is soballe $\binom{35+1}{2 \delta+1}$ possitle sutets

Computing ${ }_{\text {band }}{ }^{n}$ Sebet Shared data

$$
\begin{aligned}
& \text { Irpar: bred }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ourpt: } \\
& {[x+y]_{t}} \\
& \text { Algoithm: } \\
& {[x+y]_{t}=[x]_{t}+[x]_{t}} \\
& \beta^{\prime} \ldots . \beta^{\prime \prime} \\
& {[x)^{(1)},[x]^{(1)} \cdots x^{(x)}\left[(x]^{(1)}\right.} \\
& {\left[x x^{\prime \prime}=4\right]^{(1)}}
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow
\end{aligned}
$$

Frpt: [x]
ahnu:- c. $[x]$
Linear operations of seceetshered dorn are trizal - Just amptelocally
Multiplucation is harder

$$
\begin{aligned}
& {[x y]_{t} \neq\left([x]_{t} \times[y]_{t}\right)} \\
& {\left.[x y]_{\frac{2 \cdot t}{}}=[x]_{ \pm} \times[y]_{ \pm} \quad N=2+t \right\rvert\,} \\
& \frac{4}{y+}
\end{aligned}
$$

Bearer Multiplication:

- Assume we aterady have pre-shout indom values
- In $n \lambda:[x],[y]$.
- Goal: $[x y]_{t}$

$$
\begin{aligned}
& {[D]=([x]-[a])} \\
& {[E]=[y]-[b]}
\end{aligned}
$$

Performance:

- Comptation - lagange intepolation /FFT
- Commurication
- bytes sent. (messabe conplesity)
- counds of communication
- propolising elomeds consued

Suppose we want:

Input: $[x)_{+}$
wheat: $\left[x^{2}\right]_{t}$

- ulbener $[a],[b],[a b]$,

- Hint: [a), $\left[a^{2}\right]$

Lith one o opening.

$$
2 D[x]+\left[a^{2}\right]-D^{2}
$$

$$
=2(x-a)[x]+\left[a^{2}\right]-(x-a)(x-a)
$$

$$
\left(X^{2}\right)
$$

- Constant Round unbounded fen-in multiplatan
int:" $\left[x_{1} x_{i}\right]^{\cdots},\left[x_{2}\right]_{t}$ assume $x_{i} \neq 0$
at put: $\left[x_{1} \cdot x_{2}: \ldots \cdot x_{l}\right]_{t}$
in canst ant-degth

$$
\begin{aligned}
& {\left[a_{1}\right]=\left[r_{0}^{-1}\right] \cdot\left[x_{1}\right] \cdot\left(\begin{array}{c}
\left.r_{1}\right] \\
{\left[r_{1}^{-1}\right]}
\end{array}\right]\left[x_{2}\right] \cdot\left[r_{2}\right]} \\
& {\left[a_{2}\right]=} \\
& \vdots \\
& {\left[a_{l}\right]}
\end{aligned}
$$

$$
\begin{gathered}
{\left[a_{l}\right]} \\
A_{1}=\operatorname{open}\left(\left[a_{1}\right]\right) \cdots \quad A_{l}=\operatorname{open}\left(\left[a_{l} l\right)\right. \\
A_{i}=r_{i-1}^{-1} \cdot x_{i} \cdot r_{i} \\
A_{1} \cdot A_{2} \cdots A_{l} \\
\left(\left[x_{1}, x_{l}\right]\right)=\left[r_{0}\right] \cdot r_{0}^{-1} \cdot x_{1} \cdot x_{2} \cdots x_{l} \cdot r_{l} \cdot\left[l_{l}^{-1}\right]
\end{gathered}
$$

Double Sharing for degree reduction

$$
T_{.} \ldots[x][y]_{+}
$$

Goal: $[x y]_{t}$

$$
\begin{aligned}
& {[x]_{+} \cdot[y]_{+}=[x y]_{2+}} \\
& {[x y]_{2 t} \Rightarrow[x y]_{+}}
\end{aligned}
$$

Double Shang: $[r]_{t},[r]_{2 t} \subset \sum^{\$} F_{e}$

$$
\begin{gathered}
\underline{(x y-r)=}=\underline{\operatorname{lopen}\left([\underline{x y}]_{2 t}-[r]_{2 t}\right)} \\
\underline{[x y]_{t}=}=1+[r]_{t} \\
(x y-r)+[r] t
\end{gathered}
$$

Application: Dot Product

$$
\begin{aligned}
& \text { Incl }[\vec{x}],[\vec{y}] \\
& \text { oops: } {[\vec{x}, \vec{y}] } \\
& \sum_{i} \vec{x}[i] \cdot \vec{y}[i] \\
& {[\vec{x}, \vec{y}]_{2+}=} \sum_{i}[x[i]]_{r} \cdot[y[i]]_{+}
\end{aligned}
$$

Randomness extraction

$$
\text { Goal: }[r]_{t} \quad r \in F_{p}
$$

$\left(x_{i}, y_{i}\right)$ hraturptain

InA: $\quad \phi(i)=x_{i} \quad \phi(N+i)=r_{i}$

$$
\begin{aligned}
& {\left[x_{1}\right]_{t}, \ldots,\left[x_{N}\right]_{t} \xrightarrow{\Longrightarrow} \frac{\left[r_{1}\right]_{t}, \cdots\left[r_{l}\right]}{l=N-t}} \\
& \text { each } x_{i} \text { was chosen and sebethleed }
\end{aligned}
$$

each $\frac{x_{i} \text { was chore and sebeetheed }}{\text { by party: }}$
$t=2$

$$
a_{1}^{t} \quad-N_{-}+1
$$

$$
\underbrace{x_{1} x_{2}} x_{3} x_{4}\left({\underset{x}{x_{s}} x_{6}}_{\left(r_{1}, \cdots, r_{N}+t\right)}^{\left(r^{(r)}\right)}\right.
$$

H_{e}^{4}
N^{-t} degrees
of forum

Foxier transform for efficient
polynomial interpolation and evaluation

- Gal: reduce compatatunal cost from N^{2} (uSing Layrimge intepplatua) to $N \log N$
- Roots of unity
$\omega \in \mathbb{F}_{\rho}$ is a $n^{\prime t h}$

root of unity if $\omega^{n}=1$

$$
n=|\omega| \quad \omega \in \mathbb{Z}_{\rho}^{*}
$$

- in Z_{p}^{*} every element $\omega \in Z_{p}^{*}$ is a $p-1^{\prime}$ th roboruvirte $\omega^{p-1}=1$
- if $\omega^{n}=1$, then $n \mid p-1$
- primition/psinical not sourly:
n is the smallest Weer so

$$
\omega^{n}=1
$$

- Let n be a power of 2 , let $n \mid \rho^{-1}$, and ω is $a^{\text {pimphthe }} n^{\prime}$ 'th rout could Let $f=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ be a degree $n-1$ polynomial
Then define

$$
\frac{D T_{\omega, n}}{T}(f)=\left(f(1), f(\omega), f\left(\omega^{2}\right), f\left(\omega^{3}\right), \ldots f\left(\omega^{n-1}\right)\right)
$$

dispose fiver

$$
f(0), \ldots \underbrace{f(1), \ldots \delta(n-1)}
$$

$$
\begin{aligned}
& \text { e, }, \quad n=8, \\
& f\left(w^{2}\right)=a_{0}+a_{1}\left(\omega^{2}\right)+a_{2}\left(\omega^{2}\right)^{2}+a_{3}\left(\omega^{2}\right)^{3}+\cdots_{1} a_{7} \omega^{14} \\
& =\left(a_{0}+a_{4}\right)+\left(a_{1}+a_{5}\right) \omega^{2}+\ldots\left(a_{3}+a_{7}\right) \omega^{6} \quad \begin{array}{ll}
a_{4}\left(\omega^{2}\right)^{2} & a_{5}\left(\omega^{2}\right)^{5} \\
\left.a_{4}+\omega^{8}\right) & =a_{5} \omega^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - DET } \omega_{1}^{2}, \underline{n} 12(\text { Lodd })
\end{aligned}
$$

Inverse DFT giles you interpolation

